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Abstract: Residual stresses are those stresses that remain in a solid material even in the absence of external loading 
or thermal gradients. Residual stresses form a balanced force system within an object, as all forces and moments acting 
on one plane through the entire object must sum to zero. At cold temperatures, the stress after welding is not completely 
released because of the fast-cooling speed, which results in cracks. The central composite design model patterned the 
experimental matrix. The tungsten inert gas (TIG) welding kit was employed to weld the plates after chamfering their 
edges. 100 mild steel coupons, each measuring 80 x 40 x 10 mm, were used for the experiments. The experiment was 
conducted 20 times, with 5 specimens for each run. A 10 mm thick mild steel plate was chosen as the material for the 
experiment. This study is applying artificial neural networks to optimize and predict the residual stress of machined heat 
affected zone of mild steel welds using current, voltage and gas flow rate as the input variables. The Artificial neural 
network (ANN) was used to optimize and predict the residual stress of the weld specimen. 70% of the data was used for 
training, 15 % was used for validating and the remaining 15% for the actual test. It was observed from the analysis that 
it had 3 input neurons, 10 hidden neurons and 1 output neuron with gradient of 95.8669 at epoch 12 and validation check 
of 6 out of 6. It was also observed from the model summary statistics that a robust R2 value of 86.4% was obtained, with 
an adjusted R2 of 85.6%. 
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1.    INTRODUCTION 
 
      Within material science and engineering, residual 
stress analysis is a crucial field that provides deep 
insights into the performance, longevity, and structural 
integrity of materials (Gong et al., 2023). Residual 
stresses have a major impact on the fatigue life, fracture 
resistance, and dimensional stability of materials 
(Tabatabaeian et al., 2022). They are frequently present 
in produced components as a result of operations like 
casting, welding, or heat treatment (Akinlabi et al., 2018). 
Intricate experimental techniques like X-ray diffraction or 
neutron scattering, as well as computationally demanding 
numerical simulations like finite element analysis (FEA), 
are commonly used in traditional approaches for 
assessing residual stress (Jiang et al., 2021). These 
traditional methods have drawbacks along with their 
effectiveness. Experimentation techniques can be costly, 
time-consuming, and difficult to obtain certain supplies or 
parts for (Carpenter and Tabei, 2020). Numerical 
simulations can need a significant amount of computer 
power and knowledge, which limits their use and 
accessibility in some situations (Qi et al., 2019) 

 
  
Furthermore, the study may contain errors and 
uncertainties due to the complicated data interpretation 
and calibration procedures that both approaches 
sometimes need (Beghini & Grossi, 2024).  A strong 
alternative paradigm for residual stress analysis is 
presented by the development of machine learning, 
especially Artificial Neural Networks (ANNs), in light of 
these difficulties. ANNs are computer models that can 
recognize intricate patterns and relationships in data 
because they are modeled after the structure and 
operation of biological neural networks (Buscema et al., 
2018). By utilizing ANNs, scientists may be able to 
overcome the drawbacks of conventional techniques and 
improve forecast accuracy and efficiency while 
streamlining the residual stress analysis procedure 
(Ghoroghi et al., 2022). This paper aims to investigate the 
application of artificial neural networks (ANN) to residual 
stress analysis, with a particular emphasis on the 
incorporation of gas flow rate, voltage, and current as 
input parameters. These factors are especially relevant in  
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situations like additive manufacturing or welding, where 
they have a big impact on the material's mechanical and 
thermal history and hence residual stress distributions 
(Oliveira et al., 2020). Our goal is to create predictive 
models that can accurately represent the complex 
interactions between these input factors and the residual 
stress profiles that arise by utilizing ANNs. In the work by 
Lo et al., (2022), the control of residual stress in films is 
very important for the synthesis of mechanically stable 
AlN films as the AlN film may crack or peel from the 
substrate due to significant film residual stress. Tafarroj 
and Kolahan (2018) used a neural network and a 
regression model to establish the relationship between 
welding input variables and parameters of the Goldak 
heat source model. The results showed that the precision 
of the ANN model is slightly higher than that of the 
regression model. Lawal and Afolalu (2024) established 
that in the case of MIG welding, the effect of residual 
stress can be reduced after treatment. In the case of TIG 
welding process, increase in current will lead to 
deformation and residual stresses. The aim of this study 
is to provide engineers and researchers with a flexible and 

easily obtainable instrument for enhancing material 
processing, design, and performance, in addition to 
contributing to the growing knowledge of residual stress 
phenomena. Our goal is to promote innovation and 
advancement across several industries, such as 
aerospace, automotive, energy, and others, by 
establishing a connection between sophisticated machine 
learning methods and the complexities of material science 
and engineering. 
 
 
2.  METHODOLOGY 
 
      The central composite design (CCD) patterned the 
experimental matrix using the Design expert-13 software, 
producing 20 experimental runs. The major parameters 
varied into 20 runs using the CCD in the present study are 
the welding current, welding speed, gas flow rate, welding 
voltage while the residual stress (σR) in MPa is the 
response variable. The ranges of the parameters were 
obtained from literatures as described in Table 1. 

 
                                              Table 1: Process parameters and their levels 

 

Factors Unit Symbol Low (-1) High (+1) 

Welding Current Ampere I 130 170 
Welding Voltage Volts V 20 24 
Gas Flow Rate Lit/min GFR 13 17 

 
 
      The tungsten inert gas (TIG) welding kit was 
employed to weld the plates after chamfering their edges. 
100 mild steel coupons, each measuring 80 x 40 x 10 mm, 
were used for the experiments. The experiment was 
conducted 20 times, with 5 specimens for each run. A 10 
mm thick mild steel plate was chosen as the material for 
the experiment. The plate was cut using a power hacksaw 
and the edges were ground to smoothen the surfaces to 
be joined. The experiments were performed using the TIG 
welding process with alternating current (AC), as it 
concentrates the heat in the welding area.  
 
 
2.1 Artificial Neural Network 
 
      The artificial neural network is a data mining tool that 
can replicate the behavior and structure of a human 
expert. It consists of neurons which are made up of inputs 
and outputs. Neural networks are tools for data mining 
that are used to find patterns in databases that are 
hidden. They are two important ways in which they mimic 
the brain, functioning as massively parallel distributed 

processors. Through a process of learning, the network 
gains knowledge. This knowledge is stored in interneuron 
connection strengths, also known as synaptic weights. A 
suitable weight, represented by the letter w, is applied to 
a basic neuron with R input. The input to the transfer 
function f is the sum of the weighted inputs plus the bias. 
Any differentiable transfer function f can be used by 
neurons to produce their output. The log-sigmoid transfer 
function, or logsig, is widely employed in multilayer 
networks and generates outputs in the 0 to 1 range when 
the net input of the neuron varies from negative to positive 
infinity. The tan-sigmoid transfer function, or tansig, is an 
additional option for multilayer networks. Whereas linear 
output neurons are typically employed for function fitting 
issues, sigmoid output neurons are frequently utilized for 
pattern recognition tasks.   
      Current, voltage and gas flow rate parameter were 
taken as input into ANN architecture while the residual 
stress was the  output .the network architecture for the 
transverse shrinkage as described in the matlab 
architecture format in Figure 1 and the ANN architecture 
format in Figure 2. 
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                  Figure 1: Matlab Artificial neural network architecture format  for Residual stress 
 
 

 
     
         Figure 2: Artificial neural network architecture format  for Residual stress 
 
 
3.  RESULTS AND DISCUSSION 
 
      Data division algorithm was set to random 
(dividerand), training algorithm was set to Levenberg-
Marquardt (trainlm), and performance algorithm was set 

to Mean squared error (mse). Figure 3 describes the the 
neural network training diagram for predicting the residual 
stress responses. 
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                                Figure 3: Network training diagram for predicting Residual stress 
 
      A performance plot is produced for the transverse shrinkage network to evaluate its learning capacity which is shown 
in Figure 4. 
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                      Figure 4: Performance curve for Residual stress 
 
 
 
      An epoch signifies one complete algorithm training, 
thus, from Figure 4, it can be observed that 12 epochs 
were used and in which at the 6th epoch, the best 
prediction was achieved. The best validation performance 
was obtained at epoch 1. In the MATLAB software, an 
epoch can be thought of as a completed iteration of the 
training procedure of your artificial neural network. Which 
means, once all the vectors in your training set have been 

used or gone through your training algorithm, one epoch 
has been attained. Thus, the "real-time duration" of an 
epoch is dependent on the training method used. The 
best prediction for the Transverse responses was 
achieved at epoch 1, although, a total of 7 epochs were 
used in the iteration process. The gradient plot for the 
residual stress which measures the momentum gain of 
the network is presented in Figure 5.  

 
 

 
 
                    Figure 5: Gradient plot for residual stress 
 
      From Figure 5, it is observed that the number of 
epochs used up during the training process is 12. From 
the dotted red lines for validation checks, it could be seen 
that the lowest failure was at epoch 6 beyond which the 
validation failure rate increased.  

      To measure the correlation between the network 
output and the actual results a correlation plot is produced 
for the residual stress is presented in Figure 6

. 
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          Figure 6: Regression plot of training, validation and testing for residual stress 
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      Figure 4 presents the training, validation, and testing 
plot with correlation coefficient (R) of over 80% which 
signifies a robust prediction for the Residual stress. The 
dotted diagonal line on each plot indicates the line of best 

fit which indicates a perfect prediction. A comparison 
between the experimental results and the predicted result 
of the residual stress is presented in Table 2. 

 
                      Table 2: Experimental value vs ANN predicted result of residual stress 

 
S/N Input parameters Exp 

Responses 
ANN 

Observed 

I 
Ampere 

V Volts GFR Lit/min 𝛔𝐑 
(MPa) 

Residual stress 

𝛔𝐑 
(MPa) 

Residual stress 

1 130.00 21.50 12.50 407.80 400.348 
2 130.00 21.50 12.50 388.30 400.348 
3 110.00 20.00 11.00 340.42 340.829 
4 110.00 23.00 11.00 307.00 306.760 
5 130.00 21.50 12.50 405.47 400.348 
6 130.00 24.02 12.50 472.54 472.523 
7 163.64 21.50 12.50 385.73 385.628 
8 130.00 21.50 12.50 388.30 400.348 
9 110.00 23.00 14.00 289.00 291.494 
10 96.36 21.50 12.50 234.80 234.813 
11 150.00 20.00 14.00 410.28 410.068 
12 130.00 21.50 15.02 405.47 405.372 
13 150.00 20.00 11.00 380.00 284.641 
14 130.00 21.50 12.50 388.30 400.348 
15 130.00 18.98 12.50 405.47 405.453 
16 110.00 20.00 14.00 318.00 318.372 
17 150.00 23.00 11.00 445.88 472.374 
18 130.00 21.50 9.98 364.32 363.600 
19 130.00 21.50 12.50 405.47 400.348 
20 150.00 23.00 14.00 445.88 445.730 

 
      A graphical representation of the closeness between 
the ANN result and the actual values of the residual 

stress, a regression plot is produced which is shown in 
Figure 7

. 
 

  
 
               Figure 7: Regression plot of Experimental versus predicted residual stress 
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      Figure 7 presents the regression plot for the 
experimental observed results versus the predicted 
result. It was observed in the model summary statistics 

that a robust R2 value of 86.4% was obtained, with an 
adjusted R2 of 85.6% presented in Table 3. 

 
 
Table 3: Model Summary statistics 

 
S R-sq R-sq(adj) 

21.6760 86.38% 85.63% 

 
      The analysis of variance ANOVA for the network which measures the error probability is presented in Table 4. 
 
Table 4: Analysis of Variance for residual stress 

 
Source DF SS MS F P 

Regression 1 53653.6 53653.6 114.19 0.000 

Error 18 8457.3 469.8   

Total 19 62110.9    

 
      To measure the predictive accuracy of the residual stress network a time series plot is produced as shown in Figure 
8. 
 

 
 
               Figure 8: Time series plot showing the prediction accuracy of ANN with comparison to Experimental for residual 
stress. 
 
 
4.  CONCLUSION 
 
      The study has developed and applied a predictive 
expert model to model the residual stress of mild steel 
welded joints using the ANN model. An appropriate 
design of experiment was selected. The ANN model 
possesses satisfactory statistical results making it a highly 
effective tool to optimize and predict the target responses. 
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