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Abstract: Pipeline welds' structural integrity and strength serve as a cornerstone for ensuring operational safety and 
effectiveness. Although substantial research has delved into optimizing mechanical properties like yield strength and 
Young's modulus, a notable gap exists concerning the prediction and enhancement of non-elastic performance factors 
that substantially influence durability and long-term performance. This research aims to close this gap by scrutinizing the 
impact of a specific non-elastic factor, namely the Brinell hardness on pipeline weldments. To fulfil this objective, a 
comprehensive experimental inquiry is conducted, encompassing diverse welding methods, materials, and 
environmental conditions to authentically replicate real-world situations. The experimental setup adheres to the central 
composite design, meticulously constructed using design expert software (version 13.0). The Response Surface 
Methodology analysis yields optimal outcomes, suggesting a current of 160.000 amps, voltage of 21.280 volts, and gas 
flow rate of 14.667 liters per minute. These parameters collectively yield a welded joint with a hardness of 216.414mpa, 
achieving a desirability value of 0.918. Additionally, the artificial neural network model is employed to predict output 
parameters and compared against the RSM methodology, in which the RSM in this case had better predicted values. 
The findings underscore the pivotal role of optimizing non-elastic performance factors in pipeline weldments. By 
accurately anticipating and controlling the hardness, engineers and professionals within the pipeline sector can design 
weldments capable of enduring harsh conditions, curbing the risk of failures, and significantly prolonging pipeline 
operational lifespans. 
 
Keywords: Hardness, Mechanical properties, Response Surface Methodology, Artificial Neural Network.. Post-harvest 
loss in tomatoes and tomatillos is a major problem in the market supply chain of small farm holders.  

 
1. INTRODUCTION  
 

 

          The integrity of pipeline weldments is a 
paramount concern in industries where the safe and 
efficient transportation of fluids is crucial [1]. Among 
the various factors influencing weldment integrity, 
hardness plays a pivotal role [2]. Hardness, the 
ability of a material to resist deformation and 
penetration, is not merely a mechanical property; it 
is an indicator of a weldment's strength, durability, 
and susceptibility to certain forms of degradation 
[3]. Pipeline weldment integrity is a fundamental 
concern in industries where the safe and reliable 
transport of fluids is a necessity [4]. Hardness, a key 
mechanical property, plays a pivotal contribution to  
 

 
 
 
ascertaining the performance and durability of 
pipeline weldments [5]. This comprehensive 
literature review delves into the multifaceted 
importance of hardness, exploring its influence on 
weldment strength, durability, resistance to 
deformation, and its crucial role in identifying 
potential integrity issues. 
        A material's resistance to deformation, is a 

vital mechanical property affecting the behaviour of 

weldments in pipelines, susceptibility to cracking, 

and resistance to wear and deformation [6]. In 

pipeline weldments, which are subjected to a range 

of mechanical stresses, internal pressures, and  
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environmental conditions, hardness is a key 

parameter influencing their ability to withstand 

these challenges [7]. It is not merely a measure of 

a material's toughness but also serves as an 

indicator of how a weldment will withstand 

mechanical stresses, wear, and potential forms of 

degradation over time. One of the primary reasons 

for measuring hardness in weldments is to assess 

weld quality [8]. Properly executed welding 

processes should result in a uniform hardness 

profile across the weld zone, with no excessive 

variations [9]. Deviations from this norm, such as 

hardness peaks or troughs, can indicate issues like 

heat-affected zone (HAZ) softening, which may 

compromise the integrity of the weldment [10]. 

Hardness in weldments is influenced by various 

welding parameters, including input of heat, 

preheating temperature, interphase temperature, 

and post weld heat treatment (PWHT) [11]. The 

careful control of these parameters is crucial in 

maintaining the desired hardness levels, as 

deviations can lead to hardness-related defects 

such as hydrogen-induced cracking and 

embrittlement [12]. The mechanical integrity of 

pipeline weldments is closely tied to their hardness 

[13]. Properly controlled hardness levels ensure 

that the weldments can endure mechanical 

stresses, including those associated with internal 

pressure, external loads, and thermal cycling, 

without experiencing excessive deformation or 

failure [14]. Hardness also has implications for the 

susceptibility of pipeline weldments to corrosion 

[15]. High hardness levels, particularly in heat-

affected zones, can render weldments more prone 

to stress corrosion cracking and hydrogen-induced 

cracking [16]. Corrosion rates may increase in 

areas with elevated hardness, potentially 

compromising the long-term integrity of the pipeline 

[17]. The relationship between hardness and 

corrosion in pipeline weldments is a complex one. 

High hardness levels, particularly in the heat-

affected zone (HAZ), can increase susceptibility to 

certain forms of corrosion, such as stress corrosion 

cracking. Understanding this relationship is 

essential for selecting appropriate materials and 

corrosion mitigation strategies. Hardness is a 

critical parameter in assessing weld quality [18]. 

Uniform hardness profiles across a weldment are 

indicative of a well-executed welding process [19]. 

Deviations in hardness, such as hardness peaks or 

troughs, can signal issues such as improper heat 

input, weld discontinuities, or undesirable 

microstructural changes, all of which can 

compromise weldment integrity. Several methods 

are available for hardness testing in weldments, 

including Rockwell, Vickers, and Brinell hardness 

tests [20]. These methods provide quantitative 

measures of hardness and can be used to identify 

variations and anomalies within weldments.  

2. Findings and Discussion 

 
Process parameters  
 

         Twenty experimental runs totaling the 

current, voltage, and gas flow rate were 

performed in this study to combine two mild steel 

plates with dimensions of 60 x 40 x 10 mm. 

Measurements were made for carbon content, 

hardness, and % dilution. The process variables 

taken into account in this research study are the 

welding current, voltage, gas flow rate in 

correspondence with the welding pool 

temperature. Twenty experimental runs totaling 

the current, voltage, and gas flow rate were 

performed in this study to combine two mild steel 

plates with dimensions of 60 x 40 x 10 mm. The 

Brinell hardness test is conducted using a Brinell 

hardness testing apparatus. This testing 

procedure entails the application of a specified 

force (F) onto a tungsten carbide sphere with a 

predetermined diameter (D). This force is 

maintained for a set duration before being 

released. The spherical indenter imparts a lasting 

impression or deformation onto the test metal 

piece. This resulting impression is then 

measured by averaging two or more diameters to 

determine the indentation diameter (d). The 

loading system of the Brinell Hardness Testing 

Machine, comprising levers, weights, a hydraulic 

dashpot, and a plunger, encompasses the 

machine's body. On the movable anvil is kept the 

test substance. The spherical ball indenter 

descended on the material using the lever and 

applied a predetermined force that was shown on 

the screen. 
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Materials and experimental set-up  

 

         Thermocouples were attached to the process 

used in gas tungsten arc welding (GTAW). It took 

place at operating current range of 150 to 200 A, 

using pure helium as a shielding gas, a DCEN 

(Direct Current Electrode Negative) with a 4 mm-arc 

gap was used on a 200 x 200 x 20 mm3 low-carbon 

steel block. The measured temperatures ranged 

from 1500 to 1800 °C. The thermocouples were of 

the tungsten ~W5 variety. The thermocouple's 

overall diameter, including the tungsten wires and 

sleeving, was 1.2 mm, and they exhibit good 

resilience to high temperatures. The thermocouples 

were inserted into the samples at a depth of 4 mm, 

1.4 mm in diameter, and 20° angled. Figure 1 

depicts the thermocouple linked to the weld sample. 

 

Modelling and Optimization using Response 

Surface Methodology (RSM) 

 

          The sequential model sum of squares for the 

hardness response was performed in order to verify 

that the quadratic model was appropriate for 

evaluating the experimental data, and the results 

are shown in Table 1. 

 

 

      Table  1 Sequential model sum of square for  hardness 

Source Sum of Squares df Mean Square F-value 
p-

value 
 

Mean vs Total 8.803E+05 1 8.803E+05    

Linear vs Mean 1948.22 3 649.41 10.14 0.0006  

2FI vs Linear 9.00 3 3.00 0.0384 0.9895  

Quadratic vs 2FI 977.41 3 325.80 84.46 
< 

0.0001 
Suggested 

Cubic vs Quadratic 35.78 4 8.95 19.22 0.0014 Aliased 

Residual 2.79 6 0.4654    

Total 8.833E+05 20 44164.70    

 

          The sequential model sum of squares table 

illustrates how the model fit becomes better as more 

terms are added. Based on the estimated 

sequential model sum of squares, the highest order 

polynomial that has significant additional terms and 

a model that is not aliased was selected as the best 

fit. The cubic polynomial was found to be aliased 

from the findings in table 1, hence it cannot be used 

to fit the final model. Additionally, it was suggested 

that the quadratic and 2FI model suited the data the  

 

best, which supported the adoption of the quadratic 

polynomial in this research. 

          For each, the lack of fit test answer was 

estimated in order to assess how effectively the 

experimental data's underlying variation can be 

explained by the quadratic model. A model with a 

major fit problem cannot be used to make 

predictions. Table 2 displays the computed results 

of the lack of fit for the hardness. 

 

 

Table  2 Lack of fit test for  hardness 

Source Sum of Squares Df Mean Square F-value p-value  

Linear 1024.98 11 93.18 2.27 0.1856  

2FI 1015.98 8 127.00 2.38 0.1733  

Quadratic 38.58 5 7.72 0.1406 0.9956 Suggested 

Cubic 2.79 1 2.79 0.3958 0.6925 Aliased 

Pure Error 0.0000 5 0.0000    
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 Table 3 shows the model statistics for the hardness response that were computed using the model sources

       Table 3 Model summary statistics for hardness 

Source Std. Dev. R² 
Adjusted 

R² 

Predicted 

R² 
PRESS  

Linear 8.00 0.6553 0.5906 0.4825 1538.61  

2FI 8.84 0.6583 0.5006 0.2330 2280.52  

Quadratic 1.96 0.9870 0.9753 0.9004 296.07 Suggested 

Cubic 0.6822 0.9991 0.9970 0.7930 615.50 Aliased 

 

         The standard deviation, R-squared, adjusted 

R-squared, predicted R-squared, and predicted 

error sum of squares (PRESS) for each entire 

model statistics are displayed in the summary 

statistics of model fit. The ideal criteria for 

identifying the optimal model source are a low 

standard deviation, R-Squared close to one, and a 

relatively low PRESS. The quadratic polynomial  

 

model was chosen for this investigation since, 

according to the results of Table 3, it was indicated 

whereas the cubic polynomial model was aliased. 

The goodness of fit statistics shown in Table 4 can 

be used to confirm that the quadratic model is 

adequate according to its capacity to decrease the 

hardness.

 

                     Table 4 Goodness of fit statistics for hardness 

Std. Dev. 1.96 R² 0.9870 

Mean 209.80 Adjusted R² 0.9753 

C.V. % 0.9362 Predicted R² 0.9004 

  Adeq. Precision 31.6503 

  

      The difference between the Predicted R2 of 

0.9004 and the Adjusted R2 of 0.9753 is less than 

0.2, indicating that they are reasonably in 

agreement. Adeq Precision measures the signal-

to-noise ratio. The ideal ratio is at least 4. Your ratio 

of 31.650 indicates that your signal is sufficiently 

strong. Use this model to navigate the design area. 

To identify values or groups of values that the 

model would not have been able to easily identify, 

a comparison between the projected values and 

the actual values was made. Figure 1 illustrates 

this comparison with a focus on the hardness, 

showing how the dots are densely clustered around 

the fitted line. 

 

 

                            Figure 1  Plot of Predicted Vs Actual for hardne
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          To search for potential outliers in the 

experimental data, a Cook's distance plot was 

made for each response. Cook's distance 

calculates the potential impact of eliminating a 

particular point on the regression. Points with 

extraordinarily high distance values compared to 

the others should be given additional consideration 

in order to rule out outliers. The hardness Cook's 

distance plot is shown in Figure 2. 

 

 
Figure 2 Generated cook’s distance for hardness 

 

         The Cook's distance plot, which has a lower 

bound of 0.00 and an upper bound of 1.00, is shown 

in Figure 2. Experimental results that deviate from 

the expected range are referred to as outliers and 

need to be investigated further. The calculated 

residuals appear to follow a distribution that is 

roughly normal based on the findings of Figures 1 

and 2. This is a positive indication that the accuracy 

and tendency of the created model for prediction 

are adequate. Figure 3, 4 and 5 illustrates 3D 

surface plots created to explore the effects of 

hardness on gas flow rate, current and voltage. 

While Figure 6 shows the contour plot of current and 

voltage.          

 

   
 

Figure 3   3D Surface plot of current and voltage     Figure 4  3D Surface plot of gas flow rate and current 
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Figure 5   3D Surface plot of current and voltage                Figure 6   Contour plot of current and voltage      

  

  

 The optimal results of the numerical optimization are shown in Table 5 

 
                                     Table 5  Optimal solutions 

S/N 
 
 

Voltage 
 

Gas flow rate 
 

Hardness 
 

 

1 160.000 21.280 14.667 216.414 Selected 

2 160.000 21.286 14.676 216.448  

3 160.000 21.268 14.662 216.462  

4 160.000 21.303 14.690 216.440  

5 160.001 21.259 14.650 216.434  

 

 

 
Modelling of Hardness using Artificial Neural 

Network (ANN)         

 

          The examination also carried substantial 

significance in establishing a precise 

mathematical linkage between the response 

variable (hardness) and the input variables 

(current, voltage, and gas flow rate). In the pursuit 

of achieving an optimal network structure that 

offers the highest degree of accuracy in 

comprehending the correlation between input and 

output data, two crucial considerations were taken 

into account. Firstly, the initial focus 

encompassed the selection of the most precise 

training algorithm or learning rule. Secondly, the 

evaluation of the number of hidden neurons within 

the network was also carefully deliberated upon. 

Guided by these considerations, a diverse array 

of training algorithms and various quantities of 

hidden neurons were deliberately chosen and 

subsequently subjected to rigorous  

 

 

 

 

 

experimentation. The overarching objective 

revolved around pinpointing the optimal training 

algorithm and the most suitable number of hidden 

neurons that, when combined, yield the most 

precise and efficient network configuration. It's 

important to note that this selection process 

hinged upon the assessment of r2 (coefficient of 

determination) and MSE (mean squared error) 

values. For the analysis of the Artificial Neural 

Network, MATLAB R2022a served as the chosen 

software platform. The data underwent an initial 

step where it was stored in a dedicated folder 

within the MATLAB environment. Subsequently, it 

was normalized through conversion into a 

numeric matrix. This normalization process was 

instrumental in automatically establishing the 

dataset's range, and the import selection 

functionality was employed to seamlessly import  
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the data into the MATLAB environment. The 

Levenberg-Marquardt Back Propagation training 

algorithm, recognized as the improved second-

order gradient method, has been identified as the 

optimal learning rule and subsequently employed 

in shaping the network structure. Specifically, the 

Levenberg-Marquardt Back Propagation training 

algorithm, configured with 2 hidden neurons, was 

utilized to train a network comprising one (1) 

output processing element and three (3) input 

processing elements (PEs). The choice of 

employing 2 neurons per layer was maintained, 

and the network's performance was diligently 

monitored through coefficients of determination 

(r2) and Mean Squared Error (MSE). Within the 

network architecture, the input layer harnessed 

the hyperbolic tangent (tan-sigmoid) transfer 

function to calculate the layer output from input 

data, while the output layer employed the linear 

(purelin) transfer function. The process of network 

generation encompassed the division of input 

data into training, validation, and testing sets. In 

this study, 70% of the data was dedicated to 

network training, 15% for validation, and the 

remaining 15% for testing. The assessment of the 

network's performance extended over a maximum 

of 1000 training epochs. The network underwent 

training using the "trainlm" function, which 

systematically updates weight and bias values 

through the Levenberg-Marquardt optimization 

process. This particular function is renowned for 

its efficiency as one of the swiftest back 

propagation algorithms available. However, it's 

worth noting that it demands a relatively higher 

memory footprint compared to other algorithms. 

By meticulously configuring these parameters and 

adopting these structural components, an optimal 

neural network architecture was effectively 

established. This identical network configuration 

was then applied to predict hardness as the sole 

response variable, utilizing three input variables in 

the process. Visual representation of this network 

structure is illustrated in Figure 7. The Artificial 

Neural Network architecture is 3-15-1, the 

network diagram generated for the prediction of 

hardness using the back propagation neural 

network is presented in Figure 8. 

 

 

  
 

 Figure 7 ANN architecture                                            Figure 8  Model summary for predicting hardness 
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It was noted that the network performance was 

3210 from the network training diagram in Figure 

8. Out of six (6) validation checks, four (4) were 

recorded. But given that the issue of weight bias 

was fixed by normalizing the raw data, this is to be 

expected. Figure 9 displays a performance 

evaluation plot that depicts the development of 

training, validation, and testing. This graphic 

illustrates the effectiveness of the network at each 

of these stages.  

 

 

   
Figure 9 Performance curve of trained network for predicting hardness 

 

          Figure 10 depicts the training state and 

includes information on crucial elements like the 

gradient function, training gain (Mu), and 

validation tests. This comprehensive picture 

allows for a clear understanding of the training 

process and its related elements. 

 

 
Figure 10 Neural network training state for predicting hardness 

 

In artificial neural networks, back propagation is a 

technique used to determine each neuron's error 

contribution following a batch of training data. In 

order to explain the mistake contributions of each of 

the chosen neurons, the neural network technically 

calculates the gradient of the loss function. Better 

mistake rates. The computed gradient value of 

4.6326e-13, as can be shown in Figure 10,  
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suggests that each selected neuron's error 

contributions are quite small. The control parameter 

for the algorithm used to train the neural network is 

called momentum gain (Mu). Gains from training 

must have a value that is smaller than unity. 

Momentum gain of 1e-08 indicate a network with a 

strong ability to predict the hardness. Momentum 

increases of 1e-08 indicate a network with a strong 

ability to predict the hardness. Computed values of 

the correlation coefficient (R) is shown in Figure 11. 

 

 

 

    Figure 11  Regression plot showing the progress of training, validation and testing 

 

5. CONCLUSION 

 

In the present study, both Response Surface 

Methodology (RSM) and Artificial Neural Network 

(ANN) methods to optimize and predict the 

hardness of Tungsten Inert Gas (TIG) mild steel 

welds.  Current, voltage, and gas flow rate were 

taken into consideration as input factors, while the 

response variable of interest was the hardness. 

The analysis revealed a quadratic a connection 

between the input parameters and the outputs, as 

indicated by the sequential sum of square test for 

all the responses. The quadratic model exhibited 

a very low p-value (< 0.0001), confirming its 

statistical significance. The model summary 

statistics further underscored the effectiveness of 

the chosen models. The coefficient of 

determination (R²) values for all the responses 

were consistently around 90%, indicating a strong 

correlation between the input variables and the 

predicted responses. Moreover, the models  

 

 

 

displayed no significant lack of fit, as evidenced 

by p-values exceeding 0.005. These findings 

collectively emphasize the robustness of the 

models in capturing the connection between 

the response and input parameters. The high R² 

values (> 0.9) across all models demonstrate the 

strength of the predictive capability of the models. 

This suggests that the models are highly effective 

in estimating the selected input variables' values, 

thereby facilitating the prediction of optimal 

response values for achieving high-quality welds. 

Additionally, the variance inflation factor (VIF) of 

1.00, which aligns with expectations, signifies that 

multicollinearity among the input variables is not a 

concern in this analysis. Overall, the study 

leveraged both RSM and ANN techniques to 

create predictive models for hardness in TIG mild 

steel welds. The findings highlight the models' 

robustness, with strong correlations, low p-values,  
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and minimal multicollinearity, all of which 

contribute to their ability to facilitate the 

achievement of high-quality welds.  

This study uses artificial neural networks and 

response surface methodology to build numerical 

models that optimize and predict hardness while 

taking inputs like current, voltage, and gas flow 

rate into account. The experimental design 

employed in this study was the central composite 

design, generated using Design Expert software 

version 13.0. Through Response Surface 

Methodology (RSM) analysis, the study arrived at 

optimal conditions. These conditions included a 

current of 160.000 amps, a voltage of 21.280 

volts, and a gas flow rate of 14.667 litres per 

minute. Under these optimized parameters, a 

welded joint was achieved with a hardness of 

216.414 MPa, and this outcome corresponded to 

a desirability value of 0.918. 

In addition to RSM, an Artificial Neural Network 

(ANN) model was also utilized to predict the 

output parameters and subsequently compared 

with the results obtained through RSM 

methodology. Following a thorough analysis of the 

outcomes, it was concluded that the response 

surface methodology outperformed the Artificial 

Neural Network in terms of predictive accuracy. 

This determination was based on the observation 

that RSM yielded a higher coefficient of 

determination (R²), signifying its superior 

predictive capability. 

Conclusively, this study employed a central 

composite design generated via Design Expert 

software to optimize welding conditions. RSM 

analysis identified the ideal parameters resulting 

in a welded joint with a desired hardness value. 

Furthermore, the study contrasted RSM with an 

Artificial Neural Network for predictive modelling, 

ultimately favouring RSM due to its superior 

coefficient of determination. 
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