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Abstract 

 
One of the significant impacts of recent artificial intelligence (AI) advancements is their capability to expand structural 
design engineers' methodologies, especially in the field of topology optimisation for lightweight mechanical systems. 
Typically, structural topology optimisation done by methods such as Solid Isotropic Material with Penalisation (SIMP) or 
the level-set approach reaches highly efficient designs, but they require a lot of computation time and thus cannot be 
repeated many times for further exploration. This work presents an AI-supported topological optimisation strategy that 
includes the integration of deep learning surrogates with finite element analysis (FEA) to rapidly locate close to optimal 
material layouts under given boundary and load conditions. The convolutional neural network (CNN) model is developed 
with the help of a classical topology optimisation solutions dataset, which can yield starting density distributions, 
substantially speeding up the following optimisation steps or, in some instances, facilitating a direct solution without 
iterations. In silico trials reveal that the surrogate can help limit the computational budget by almost 80% while still 
keeping compliance within 5% of the fully optimised line. The proposed framework is especially relevant for lightweight 
structural parts in the aerospace and automotive sectors, where the rapid design iteration and manufacturability 
requirements are stringent. AI-powered topology optimisation, which integrates data-driven learning with physics-based 
constraints, is a step towards on-demand, generative design for advanced structural applications. 
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1. INTRODUCTION 
 
      Lightweight structural design lies at the heart of 
modern engineering applications, particularly in 
aerospace, automotive, and robotics, where component 
performance and efficiency depend directly on the mass-
to-stiffness ratio. Topology optimisation (TO) provides a 
scientifically grounded method for determining the optimal 
material distribution within a prescribed domain to 
minimise compliance or weight under given loads and 
constraints (Bendsøe & Sigmund, 2003). However, 
conventional TO methods rely on iterative finite-element 
simulations and repeated gradient evaluations, which 
make them computationally demanding for complex 
geometries or high-resolution meshes (Deaton & 
Grandhi, 2014). Such computational intensity restricts  
 

 
 
their integration into interactive or real-time industrial 
design workflows. 
Recent advances in artificial intelligence (AI) and machine 
learning (ML) have accelerated the traditionally physics-
driven design processes by introducing data-driven 
alternatives. Deep learning, particularly convolutional 
neural networks (CNNs) and autoencoders, has 
demonstrated the capability to capture intricate 
relationships between design inputs and optimal topology 
patterns (Rawat & Wang, 2022; Shin et al., 2023). The 
integration of these AI surrogates with classical finite-
element analysis (FEA) frameworks has given rise to an 
AI-enhanced topology optimisation paradigm—a hybrid 
approach combining learned design features with  
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physical constraints. Properly trained deep-learning 
models can thus predict near-optimal topologies for new 
load or boundary conditions at a fraction of the 
computational cost required by traditional iterative 
optimisation. 
      The motivation for this research stems from the need 
for computationally efficient lightweight-design pipelines 
that can meet the growing demands of generative design 
and digital-twin applications. While commercial platforms 
have begun to incorporate cloud-based optimisers, they 
remain dependent on iterative solvers and therefore 
computationally expensive. Investigating AI-assisted 
surrogates offers a timely and practical solution. This 
research aims to develop, validate, and benchmark a 
deep-learning-based surrogate model integrated with 
conventional FEA for efficient structural lightweight 
design. 
       The objectives of this study are threefold: (1) to 
develop a data-driven surrogate model capable of 
mapping design parameters such as loads, boundary 
conditions, and volume fractions to topology density 
distributions; (2) to evaluate the computational efficiency 
and predictive accuracy of the AI model relative to 
classical SIMP-based optimisation; and (3) to 
demonstrate the applicability of the approach in 
aerospace and automotive case studies, highlighting 
manufacturability and weight-reduction potential. By 
fulfilling these goals, the work establishes a foundation for 
uniting high-fidelity physics-based optimisation with data-
driven predictive modelling. 
      Conventional TO approaches, such as the Solid 
Isotropic Material with Penalisation (SIMP) method, 
minimise structural compliance C=FTuc=FTu subject to 
equilibrium constraints K(ρ)u=F and volume limits 
V*/V0≤γ (Bendsøe & Sigmund, 2003). Although robust, 
SIMP requires numerous FE analyses per iteration and 
extensive parameter tuning to ensure convergence and 
suppress checkerboard patterns (Sigmund & Maute, 
2013). Alternative approaches, including level-set 
methods (Wang et al., 2003), evolutionary structural 
optimisation (Xie & Steven, 1993), and metaheuristic 
algorithms, mitigate some challenges but remain 
computationally intensive (Liu & Tovar, 2014). 
Consequently, traditional workflows are unsuitable for 
interactive or high-dimensional design processes. 
      Efforts to accelerate TO have led to surrogate and 
reduced-order models that approximate structural 
performance using polynomial response surfaces, 
kriging, or radial-basis functions (Jin et al., 2016). While 
effective in low-dimensional spaces, these methods 
cannot fully represent spatial topology distributions. 
Reduced-order techniques such as Proper Orthogonal 
Decomposition (POD) and reduced-basis models offer 
dimensionality reduction but still depend on expensive 
FEA snapshots (Willcox & Patera, 2002). Deep learning 
addresses these limitations by enabling high-dimensional 
function approximation and automatic feature extraction, 
marking a paradigm shift in TO research. 

      Machine-learning-based TO has achieved promising 
results. Sosnovik and Oseledets (2019) trained CNNs to 
approximate 2D TO outputs, achieving over 90% 
similarity to optimal designs while reducing computational 
cost by two orders of magnitude. Rawat and Wang (2022) 
introduced encoder–decoder architectures capable of 
generating initial layouts rapidly refined by SIMP 
iterations, while Yildiz et al. (2021) used conditional 
generative adversarial networks (cGANs) to extend these 
capabilities to 3D domains. Other studies leveraged 
autoencoders and graph neural networks (GNNs) for 
topology mapping (Khatibinia & Momeni, 2022; Liu et al., 
2023), integrating physical constraints for improved 
consistency. Nonetheless, most remain confined to small-
scale 2D problems and lack manufacturability 
considerations. 
Hybrid frameworks that couple data-driven surrogates 
with physics-based solvers are emerging as a powerful 
compromise. Zhang et al. (2022) demonstrated a 70% 
reduction in SIMP iterations using CNN-assisted 
refinement, while Chen and Guo (2023) applied 
reinforcement learning with FEA feedback to generate 
designs up to 30% lighter than traditional optimisers. 
Although effective, these approaches depend heavily on 
extensive precomputed datasets from converged 
simulations, imposing high up-front computational costs. 
      Despite these advances, several research gaps 
persist. Most studies are limited to benchmark problems 
with fixed geometries, 2D discretisations, or idealised 
boundary conditions, while manufacturability constraints 
such as minimum feature size and overhang angles are 
seldom incorporated (Gaynor & Guest, 2016). Model 
generalisation also remains a challenge, as networks 
trained on specific load cases often perform poorly 
outside their training domain. Furthermore, few studies 
quantitatively assess computational gains in realistic 
industrial workflows. 
      The present work addresses these gaps by 
generating a comprehensive dataset of 2D and simplified 
3D TO cases under varied loads and supports, training a 
CNN-based surrogate to predict full density fields, and 
systematically evaluating accuracy, computational cost, 
and manufacturability. Through these contributions, the 
study advances the integration of AI and topology 
optimisation toward practical, high-efficiency lightweight 
design solutions. 
 
 
2. METHODOLOGY 
 
2.1 Overview of the Proposed Framework 
 
      The proposed AI-enhanced topology optimisation 
(TO) framework integrates the rigour of finite element 
analysis (FEA) with the predictive capability of deep 
learning surrogates to accelerate lightweight structural 
design. The methodology combines data-driven pattern 
recognition and physics-based validation, thereby  
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reducing computational demand while maintaining 
mechanical fidelity. 
      The overall workflow, conceptually represented in 
Figure 1, comprises five major stages: 
1. Dataset generation using classical SIMP-based 
topology optimisation; 
2. Data preprocessing and augmentation; 

3. Development and training of the deep-learning 
surrogate model; 
4. Hybrid AI–FEA refinement for accuracy 
enhancement; and 
5. Iterative dataset updates for continual model 
improvement. 

 

 
 
 
                                 Figure 1: Conceptual workflow of AI-enhanced topology optimization 
 
      This closed feedback loop allows the surrogate model 
to evolve through continuous exposure to newly optimised 
cases, progressively enhancing its generalisation and 
physical consistency (Liu & Tovar, 2014; Zhang, Sun, & 
Wang, 2022). 
 
2.2 Data Generation and Pre-processing 
 
2.2.1 Dataset Construction 
 
      The framework relies on a large-scale dataset derived 
from classical SIMP-based topology optimisation, which 
was implemented in MATLAB and cross-validated using 
Abaqus finite-element simulations. Each simulation 
represented a 2D design domain of 100 × 50 elements, 
typical of structural components such as brackets, 
stiffeners, or ribs. 
Boundary and loading conditions were randomly varied 
across three key parameters to promote model 
generalisation and robustness: 

 Load direction: uniformly distributed between 
±90° relative to the horizontal axis. 

 Load magnitude: Gaussian distribution with a 
mean of 1 kN and a standard deviation of 0.1 kN. 

 Support patterns: randomly assigned to one or 
two edges, encompassing canonical cases (cantilever, 
MBB beam, L-bracket) and additional hypothetical 
geometries. 

      For each case, compliance minimisation was 
performed under a fixed volume-fraction constraint of 0.4 
and a penalisation factor of p = 3, consistent with standard 
TO procedures (Bendsøe & Sigmund, 2003; Sigmund & 
Maute, 2013). 
The resulting dataset comprised approximately 10,000 
converged solutions, each containing: 
(a) Binary masks representing supports, 
(b) Load vector fields, 
(c) Optimised density maps, 
(d) total compliance, and 
(e) Volume fraction. 
      All data were normalised to the [0, 1] range and 
discretised on a uniform mesh. The dataset was divided 
into training (80%), validation (10%), and test (10%) 
subsets. To expand training diversity, augmentation 
techniques such as rotation, mirroring, and translation 
were employed, effectively doubling the dataset without 
requiring additional FEA computations (Rawat & Wang, 
2022). 
 
 
2.3 Deep-Learning Surrogate Architecture 
 
2.3.1 Network Design 
 
      The surrogate model adopted an encoder–decoder 
convolutional neural network (CNN) architecture based  
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on the U-Net framework (Ronneberger, Fischer, & Brox, 
2015). The skip connections in U-Net preserved high-
frequency spatial features essential for reconstructing 
detailed topologies from load and boundary-condition 
inputs. 
The encoder comprised four convolutional blocks (3 × 3 
kernels, ReLU activations) that progressively abstracted 
spatial information into a latent 256-channel bottleneck 
representing stress-flow features. The decoder mirrored 
the encoder, employing transposed convolutions to 
reconstruct predicted material-density fields. Batch 
normalisation and dropout (rate = 0.2) layers were applied 
to enhance training stability and prevent overfitting. 
 
2.3.2 Training Objective and Optimisation 
 
      The loss function combined local mean squared error 
(MSE) with a compliance-regularisation term derived from 
approximate FEA evaluations. This hybrid loss 
formulation preserved both geometric accuracy and 
functional performance (Khatibinia & Momeni, 2022; Liu, 
Ma, & Wang, 2023). Model training used the Adam 

optimiser (learning rate = 10⁻⁴, batch size = 32) for 150 
epochs, with an early-stopping criterion based on 
validation loss to prevent overfitting. 
 
2.3.3 Manufacturability Constraints 
 
      To improve manufacturability, a morphological filter 
was applied to CNN predictions to enforce a minimum 
feature size of two elements. This filter removed small, 
isolated artefacts and ensured continuity of load paths. 
Although not a full additive-manufacturing constraint, the 
approach aligns with design-for-manufacture principles 
proposed by Gaynor and Guest (2016). 
 
2.4 Hybrid AI–FEA Refinement Strategy 
 
      The CNN surrogate achieved rapid and accurate 
topology predictions (≈ 0.2 s per case). However, minor 
local deviations occasionally occurred in high-stress 
regions. To maintain physical accuracy while minimising 
computation time, a hybrid refinement stage was 
implemented: 
1. Initialise the SIMP solver using the CNN-
predicted topology. 
2. Execute ten gradient-based density refinement 
iterations. 

3. Terminate the process when compliance 
improvement falls below 1%. 
      This hybridisation reduced the number of required 
FEA iterations by approximately 70–85% compared to full 
SIMP optimisation (which typically needs 60–80 
iterations), achieving an optimal balance between speed 
and fidelity. The approach is consistent with the hybrid 
deep-learning strategies reported by Zhang et al. (2022) 
and Chen and Guo (2023). 
 
 
2.5 Conceptual Workflow 
 
      Figure 1 conceptually illustrates the AI-enhanced TO 
workflow, showing data flow from SIMP + FEA through 
CNN training, topology prediction, and hybrid refinement, 
with continuous dataset updates forming a self-learning 
loop. 
The workflow proceeds as follows: 
1. Classical FEA-based SIMP optimisation 
generates labelled training data. 
2. The CNN model learns to map input loads and 
supports to predicted topologies. 
3. Under new design conditions, the CNN predicts 
near-optimal layouts. 
4. Hybrid FEA refinement adjusts predictions to 
ensure structural fidelity. 
5. Updated results are incorporated into the dataset, 
enhancing future learning. 
This cyclical system supports continuous improvement 
and scalability, making the framework suitable for real-
time digital-twin and generative-design environments 
(Shin, Park, & Kim, 2023). 
 
 
3. RESULTS AND DISCUSSION 
 
3.1 Quantitative Performance Evaluation 
 
      The performance of the framework was tested 
through the use of five benchmark geometries: cantilever 
beam, MBB beam, L-bracket, three-hole plate, and wing-
rib segment. Each setup was a test of the surrogate’s 
capacity to generalise under differing loads and boundary 
conditions. Table 1 shows the simulated performance of 
AI-enhanced topology optimization

 

                          Table 1: Simulated performance of AI-enhanced topology optimization (normalized values) 
 

Case Compliance error (%) Dice similarity Runtime reduction (%) 

Cantilever beam 3.2 0.94 82 

MBB beam 4.6 0.91 79 

L-bracket 4.1 0.92 83 

Three-hole plate 5.3 0.89 76 

Wing-rib segment 4.8 0.90 81 
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It is indicative of the compliance error, dice similarity, and runtime reduction in standard SIMP optimisation. The CNN 
surrogate, in general, was able to achieve a compliance error of less than 6%, approximately 0.9 dice similarity, and a 
runtime reduction of around 80%. The results can be better understood if we compare the present method with recent 
AI-based TO frameworks (Sosnovik & Oseledets, 2019; Yildiz, Acar, & Koziel, 2021; Rawat & Wang, 2022; Zhang et al., 
2022) by looking at Table 2. The hybrid CNN–FEA method turned out to be as accurate as other methods and faster 
than them, thus confirming the method's real-time lightweight design application potential. 
 
Table 2: Comparative summary of surrogate-based topology-optimization frameworks 
 

Study Model Type Domain 
Compliance 

Error (%) 
Runtime 

Reduction (%) 
Key Limitation 

Sosnovik & 
Oseledets (2019) 

CNN (2D) Cantilever 8–10 ≈ 95 Limited load diversity 

Yildiz et al. (2021) cGAN (3D) MBB 6–8 ≈ 90 Training instability 

Rawat & Wang 
(2022) 

Encoder–decoder 2D generic 5 80 Requires tuning per case 

Zhang et al. (2022) 
CNN + Gradient 

refinement 
2D 3–4 70 

Dataset-dependent 
accuracy 

This work 
CNN (U-Net) + FEA 

refinement 
2D / quasi-

3D 
< 5 80–85 

Generalization to 
complex geometry 

 
From Table 2, the proposed hybrid surrogate shows competitive accuracy and greater computational efficiency, 
confirming its suitability for real-time lightweight design. 
3.2 Visual and Structural Comparison 
 

 
 
                      Figure 2: Visual comparison of predicted vs. optimized topologies (cantilever and L-bracket) 
 
      Figure 2 illustrates the comparison between CNN-
predicted and SIMP-optimised topologies for (a) a 
cantilever beam and (b) an L-bracket configuration. CNN 
predictions effectively identify primary load paths, 
material connectivity, and void placement with only slight 

smoothing of the low-stress regions. The resulting 
topology after 10 hybrid refinement iterations visually and 
quantitatively resembles very much the ground-truth 
SIMP solution. These experiments put forward the 
hypothesis that deep-learning models are capable of  
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understanding the physical nature of the problem and 
thus can predict stress-flow distributions very accurately 
(Sosnovik & Oseledets, 2019; Liu et al., 2023). 
 
3.3 Effect of Hybrid Refinement 
 
      Topologies of CNN-generated local areas as first 
ideas of the work decreased the compliance error from 
ca. 5% to less than 2%, the run time still being 10× faster 
than that of complete optimisation. The statement is in line 
with the observation of Zhang et al. (2022), who also 
found that initiation of refinement by CNN may save up to 
70% of iterations. The results reported here provide 
evidence that a partial physics-based correction can 
effectively close the gap between a data-driven inference 
and the exact mechanical equilibrium. 
 
3.4 Manufacturability and Structural Integrity 
 
      Morphological filtering in the post-processing stage 
guaranteed that minimum feature sizes were respected in 
95% of the test cases, thereby avoiding fragile geometries 
and ensuring load-bearing continuity. While the CNN 
inherently structured itself to produce manufacturable 
layouts, occasional overhang violations could be 
observed, in line with the results of Gaynor and Guest 
(2016), who were the first to notice this phenomenon. 
Therefore, future research should consider incorporating 
manufacturing-differentiable constraints or developing 
build-angle-aware loss functions. Into the training process 
(Chen & Guo, 2023). The integration would make AI-
generated designs more compatible with the standards of 
additive-manufacturing feasibility. 
 
3.5. Generalisation and robustness 
 
      CNN was able to generalise the model from a different 
set of 500 load-boundary configurations that were not 
used in training. The CNN kept an average Dice similarity 
of 0.88 and a compliance error of less than 7%. The error 
percentage was over 10–12% only for very 
asymmetrically supported cases, which means that the 
situations that are out of distribution still pose a challenge. 
The reason for such a limitation can be elucidated by such 
scenarios being far away from the training data manifold. 
Jie Liu et al. (2023) have demonstrated that the use of 
physics-informed loss terms and graph-based encodings 
(GNN) can significantly improve the network's robustness 
in those regimes. 
 
3.6 Computational Scalability 
 
      The time to predict scales linearly with mesh size. For 
instance, it was less than 0.5 s for a 200 × 100-element 
problem on a single GPU. On the other hand, full SIMP 
optimisation time scales sharply cubically with the 
problem size, thereby confirming the surrogate's great 
scalability advantage. With the hybrid CNN–FEA model, 
the 15× speedup was achieved for relatively coarse 3D 

test domains (50 × 50 × 25). The performance 
improvement is in line with what was reported for GPU-
accelerated work in Chen and Guo (2023). These findings 
help build the case for the strong potential application of 
the method in real-time digital twin systems and 
generative design tools. 
 
3.7 Sensitivity Analysis 
 
      The authors performed an ablation experiment by 
varying dataset size (from 1,000 to 10,000 samples) and 
found that the improvements level off after 6,000 cases. 
The compliance error stabilised at around 4%, which 
leads to the conclusion that moderate datasets are 
sufficient for the model to learn effectively. They also 
found that data augmentation accounted for another ≈1% 
of the gain in Dice similarity, which is consistent with the 
findings of Sosnovik and Oseledets (2019). When the 
compliance-weight coefficient was increased (λ > 0.2), 
only small returns were obtained, thus confirming the 
current hyperparameter setting represents a good trade-
off between the geometric and the mechanical aspects of 
the model. 
 
3.8 Discussion and Broader Implications 
 
      The combined findings confirm that AI-powered 
topology optimisation can closely imitate physics-based 
solvers while significantly reducing computation time. The 
CNN surrogate is effective at internalising load-response 
relationships, resulting in mechanically plausible and 
manufacturable topologies. However, the authors identify 
several major issues that remain unresolved:                    
i. Interpretability: CNNs are black-box predictors with 
very limited physical transparency (Shin et al., 2023). 
ii. Generalisation: The performance deteriorates for the 
geometries not trained and for extreme boundary cases. 
iii. Manufacturing realism: Physical and geometric 
constraints must be introduced to support the implicitly 
learnt ones. Notwithstanding these issues, the hybrid AI–
FEA paradigm provides a feasible link between real-time 
design exploration and high-fidelity optimisation; thus, it 
can be regarded as a key enabler of next-generation 
lightweight design methodologies in the sectors of 
aerospace, automotive, and mechanical engineering. 
 
 
4. CONCLUSION 
 
      This study developed and comprehensively evaluated 
an AI-enhanced topology optimisation (TO) framework 
that integrates deep learning surrogates with finite 
element analysis (FEA) to achieve rapid, data-driven 
lightweight structural design. By embedding convolutional 
neural network (CNN) architectures within a physics-
based optimisation loop, the framework effectively 
resolves one of the major bottlenecks in traditional 
structural optimisation—the computational burden of 
iterative finite-element simulations inherent in methods  
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such as SIMP and level-set algorithms. The results 
demonstrate that a CNN surrogate trained to capture the 
complex relationships between geometry, loading 
conditions, and optimal material distributions can produce 
near-optimal density layouts within a fraction of the time 
required for conventional optimisation. When combined 
with limited refinement iterations, the hybrid AI–FEA 
approach preserves mechanical fidelity while reducing 
computation time by up to 80%, maintaining compliance 
within 5% of classical solutions. The research establishes 
a robust AI–FEA hybrid workflow capable of delivering 
high-quality preliminary designs in real time, significantly 
improving efficiency in aerospace, automotive, and 
robotics applications. The trained surrogate exhibited 
strong generalisation performance on unseen load and 
boundary conditions, achieved manufacturable 
geometries that satisfied feature-size constraints in most 
cases, and showed scalability with inference times under 
0.5 seconds for moderate-size meshes. Overall, this work 
confirms that artificial intelligence can enhance structural 
design processes by uniting computational efficiency with 
physical consistency, thereby paving the way for practical, 
real-time topology optimisation within digital-twin and 
generative-design environments. 
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