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Abstract

One of the significant impacts of recent artificial intelligence (Al) advancements is their capability to expand structural
design engineers' methodologies, especially in the field of topology optimisation for lightweight mechanical systems.
Typically, structural topology optimisation done by methods such as Solid Isotropic Material with Penalisation (SIMP) or
the level-set approach reaches highly efficient designs, but they require a lot of computation time and thus cannot be
repeated many times for further exploration. This work presents an Al-supported topological optimisation strategy that
includes the integration of deep learning surrogates with finite element analysis (FEA) to rapidly locate close to optimal
material layouts under given boundary and load conditions. The convolutional neural network (CNN) model is developed
with the help of a classical topology optimisation solutions dataset, which can vyield starting density distributions,
substantially speeding up the following optimisation steps or, in some instances, facilitating a direct solution without
iterations. In silico trials reveal that the surrogate can help limit the computational budget by almost 80% while still
keeping compliance within 5% of the fully optimised line. The proposed framework is especially relevant for lightweight
structural parts in the aerospace and automotive sectors, where the rapid design iteration and manufacturability
requirements are stringent. Al-powered topology optimisation, which integrates data-driven learning with physics-based
constraints, is a step towards on-demand, generative design for advanced structural applications.

Keywords: topology optimisation; deep learning; surrogate modelling; finite element analysis; lightweight design;
structural optimization

1. INTRODUCTION

Lightweight structural design lies at the heart of
modern engineering applications, particularly in
aerospace, automotive, and robotics, where component
performance and efficiency depend directly on the mass-
to-stiffness ratio. Topology optimisation (TO) provides a
scientifically grounded method for determining the optimal
material distribution within a prescribed domain to
minimise compliance or weight under given loads and
constraints (Bendsge & Sigmund, 2003). However,
conventional TO methods rely on iterative finite-element
simulations and repeated gradient evaluations, which
make them computationally demanding for complex
geometries or high-resolution meshes (Deaton &
Grandhi, 2014). Such computational intensity restricts

their integration into interactive or real-time industrial
design workflows.

Recent advances in artificial intelligence (Al) and machine
learning (ML) have accelerated the traditionally physics-
driven design processes by introducing data-driven
alternatives. Deep learning, particularly convolutional
neural networks (CNNs) and autoencoders, has
demonstrated the capability to capture intricate
relationships between design inputs and optimal topology
patterns (Rawat & Wang, 2022; Shin et al., 2023). The
integration of these Al surrogates with classical finite-
element analysis (FEA) frameworks has given rise to an
Al-enhanced topology optimisation paradigm—a hybrid
approach combining learned design features with
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physical constraints. Properly trained deep-learning
models can thus predict near-optimal topologies for new
load or boundary conditions at a fraction of the
computational cost required by traditional iterative
optimisation.

The motivation for this research stems from the need
for computationally efficient lightweight-design pipelines
that can meet the growing demands of generative design
and digital-twin applications. While commercial platforms
have begun to incorporate cloud-based optimisers, they
remain dependent on iterative solvers and therefore
computationally expensive. Investigating Al-assisted
surrogates offers a timely and practical solution. This
research aims to develop, validate, and benchmark a
deep-learning-based surrogate model integrated with
conventional FEA for efficient structural lightweight
design.

The objectives of this study are threefold: (1) to
develop a data-driven surrogate model capable of
mapping design parameters such as loads, boundary
conditions, and volume fractions to topology density
distributions; (2) to evaluate the computational efficiency
and predictive accuracy of the Al model relative to
classical SIMP-based optimisation; and (3) to
demonstrate the applicability of the approach in
aerospace and automotive case studies, highlighting
manufacturability and weight-reduction potential. By
fulfilling these goals, the work establishes a foundation for
uniting high-fidelity physics-based optimisation with data-
driven predictive modelling.

Conventional TO approaches, such as the Solid
Isotropic Material with Penalisation (SIMP) method,
minimise structural compliance C=FTuc=FTu subiject to
equilibrium constraints K(p)u=F and volume limits
V*/\VO<y (Bendsge & Sigmund, 2003). Although robust,
SIMP requires numerous FE analyses per iteration and
extensive parameter tuning to ensure convergence and
suppress checkerboard patterns (Sigmund & Maute,
2013). Alternative approaches, including level-set
methods (Wang et al., 2003), evolutionary structural
optimisation (Xie & Steven, 1993), and metaheuristic
algorithms, mitigate some challenges but remain
computationally intensive (Liu & Tovar, 2014).
Consequently, traditional workflows are unsuitable for
interactive or high-dimensional design processes.

Efforts to accelerate TO have led to surrogate and
reduced-order models that approximate structural
performance using polynomial response surfaces,
kriging, or radial-basis functions (Jin et al., 2016). While
effective in low-dimensional spaces, these methods
cannot fully represent spatial topology distributions.
Reduced-order techniques such as Proper Orthogonal
Decomposition (POD) and reduced-basis models offer
dimensionality reduction but still depend on expensive
FEA snapshots (Willcox & Patera, 2002). Deep learning
addresses these limitations by enabling high-dimensional
function approximation and automatic feature extraction,
marking a paradigm shift in TO research.

Machine-learning-based TO has achieved promising
results. Sosnovik and Oseledets (2019) trained CNNs to
approximate 2D TO outputs, achieving over 90%
similarity to optimal designs while reducing computational
cost by two orders of magnitude. Rawat and Wang (2022)
introduced encoder—decoder architectures capable of
generating initial layouts rapidly refined by SIMP
iterations, while Yildiz et al. (2021) used conditional
generative adversarial networks (cGANSs) to extend these
capabilities to 3D domains. Other studies leveraged
autoencoders and graph neural networks (GNNs) for
topology mapping (Khatibinia & Momeni, 2022; Liu et al.,
2023), integrating physical constraints for improved
consistency. Nonetheless, most remain confined to small-
scale 2D problems and lack manufacturability
considerations.

Hybrid frameworks that couple data-driven surrogates
with physics-based solvers are emerging as a powerful
compromise. Zhang et al. (2022) demonstrated a 70%
reduction in SIMP iterations using CNN-assisted
refinement, while Chen and Guo (2023) applied
reinforcement learning with FEA feedback to generate
designs up to 30% lighter than traditional optimisers.
Although effective, these approaches depend heavily on
extensive precomputed datasets from converged
simulations, imposing high up-front computational costs.

Despite these advances, several research gaps
persist. Most studies are limited to benchmark problems
with fixed geometries, 2D discretisations, or idealised
boundary conditions, while manufacturability constraints
such as minimum feature size and overhang angles are
seldom incorporated (Gaynor & Guest, 2016). Model
generalisation also remains a challenge, as networks
trained on specific load cases often perform poorly
outside their training domain. Furthermore, few studies
gquantitatively assess computational gains in realistic
industrial workflows.

The present work addresses these gaps by
generating a comprehensive dataset of 2D and simplified
3D TO cases under varied loads and supports, training a
CNN-based surrogate to predict full density fields, and
systematically evaluating accuracy, computational cost,
and manufacturability. Through these contributions, the
study advances the integration of Al and topology
optimisation toward practical, high-efficiency lightweight
design solutions.

2. METHODOLOGY
2.1 Overview of the Proposed Framework

The proposed Al-enhanced topology optimisation
(TO) framework integrates the rigour of finite element
analysis (FEA) with the predictive capability of deep
learning surrogates to accelerate lightweight structural
design. The methodology combines data-driven pattern
recognition and physics-based validation, thereby



reducing computational
mechanical fidelity.

The overall workflow, conceptually represented in
Figure 1, comprises five major stages:

demand while maintaining

1. Dataset generation using classical SIMP-based
topology optimisation;
2. Data preprocessing and augmentation;
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3. Development and training of the deep-learning
surrogate model;

4, Hybrid AI-FEA refinement for accuracy
enhancement; and

5. Iterative dataset updates for continual model
improvement.
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Figure 1: Conceptual workflow of Al-enhanced topology optimization

This closed feedback loop allows the surrogate model
to evolve through continuous exposure to newly optimised
cases, progressively enhancing its generalisation and
physical consistency (Liu & Tovar, 2014; Zhang, Sun, &
Wang, 2022).

2.2 Data Generation and Pre-processing
2.2.1 Dataset Construction

The framework relies on a large-scale dataset derived
from classical SIMP-based topology optimisation, which
was implemented in MATLAB and cross-validated using
Abaqus finite-element simulations. Each simulation
represented a 2D design domain of 100 x 50 elements,
typical of structural components such as brackets,
stiffeners, or ribs.

Boundary and loading conditions were randomly varied

across three key parameters to promote model
generalisation and robustness:

. Load direction: uniformly distributed between
+90° relative to the horizontal axis.

. Load magnitude: Gaussian distribution with a
mean of 1 kN and a standard deviation of 0.1 kN.

. Support patterns: randomly assigned to one or

two edges, encompassing canonical cases (cantilever,
MBB beam, L-bracket) and additional hypothetical
geometries.

For each case, compliance minimisation was
performed under a fixed volume-fraction constraint of 0.4
and a penalisation factor of p = 3, consistent with standard
TO procedures (Bendsge & Sigmund, 2003; Sigmund &
Maute, 2013).

The resulting dataset comprised approximately 10,000
converged solutions, each containing:

(a) Binary masks representing supports,

(b) Load vector fields,

(c) Optimised density maps,

(d) total compliance, and

(e) Volume fraction.

All data were normalised to the [0, 1] range and
discretised on a uniform mesh. The dataset was divided
into training (80%), validation (10%), and test (10%)
subsets. To expand training diversity, augmentation
technigues such as rotation, mirroring, and translation
were employed, effectively doubling the dataset without
requiring additional FEA computations (Rawat & Wang,
2022).

2.3 Deep-Learning Surrogate Architecture

2.3.1 Network Design

The surrogate model adopted an encoder—decoder
convolutional neural network (CNN) architecture based
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on the U-Net framework (Ronneberger, Fischer, & Brox,
2015). The skip connections in U-Net preserved high-
frequency spatial features essential for reconstructing
detailed topologies from load and boundary-condition
inputs.

The encoder comprised four convolutional blocks (3 x 3
kernels, ReLU activations) that progressively abstracted
spatial information into a latent 256-channel bottleneck
representing stress-flow features. The decoder mirrored
the encoder, employing transposed convolutions to
reconstruct predicted material-density fields. Batch
normalisation and dropout (rate = 0.2) layers were applied
to enhance training stability and prevent overfitting.

2.3.2 Training Objective and Optimisation

The loss function combined local mean squared error
(MSE) with a compliance-regularisation term derived from
approximate FEA evaluations. This hybrid loss
formulation preserved both geometric accuracy and
functional performance (Khatibinia & Momeni, 2022; Liu,
Ma, & Wang, 2023). Model training used the Adam
optimiser (learning rate = 1074, batch size = 32) for 150
epochs, with an early-stopping criterion based on
validation loss to prevent overfitting.

2.3.3 Manufacturability Constraints

To improve manufacturability, a morphological filter
was applied to CNN predictions to enforce a minimum
feature size of two elements. This filter removed small,
isolated artefacts and ensured continuity of load paths.
Although not a full additive-manufacturing constraint, the
approach aligns with design-for-manufacture principles
proposed by Gaynor and Guest (2016).

2.4 Hybrid AI-FEA Refinement Strategy

The CNN surrogate achieved rapid and accurate
topology predictions (= 0.2 s per case). However, minor
local deviations occasionally occurred in high-stress
regions. To maintain physical accuracy while minimising
computation time, a hybrid refinement stage was

implemented:

1. Initialise the SIMP solver using the CNN-
predicted topology.

2. Execute ten gradient-based density refinement
iterations.

3. Terminate the process when
improvement falls below 1%.

This hybridisation reduced the number of required
FEA iterations by approximately 70-85% compared to full
SIMP  optimisation (which typically needs 60-80
iterations), achieving an optimal balance between speed
and fidelity. The approach is consistent with the hybrid
deep-learning strategies reported by Zhang et al. (2022)
and Chen and Guo (2023).

compliance

2.5 Conceptual Workflow

Figure 1 conceptually illustrates the Al-enhanced TO
workflow, showing data flow from SIMP + FEA through
CNN training, topology prediction, and hybrid refinement,
with continuous dataset updates forming a self-learning

loop.

The workflow proceeds as follows:

1. Classical FEA-based SIMP  optimisation
generates labelled training data.

2. The CNN model learns to map input loads and
supports to predicted topologies.

3. Under new design conditions, the CNN predicts
near-optimal layouts.

4, Hybrid FEA refinement adjusts predictions to
ensure structural fidelity.

5. Updated results are incorporated into the dataset,

enhancing future learning.
This cyclical system supports continuous improvement
and scalability, making the framework suitable for real-
time digital-twin and generative-design environments
(Shin, Park, & Kim, 2023).

3. RESULTS AND DISCUSSION
3.1 Quantitative Performance Evaluation

The performance of the framework was tested
through the use of five benchmark geometries: cantilever
beam, MBB beam, L-bracket, three-hole plate, and wing-
rib segment. Each setup was a test of the surrogate’s
capacity to generalise under differing loads and boundary
conditions. Table 1 shows the simulated performance of
Al-enhanced topology optimization

Table 1: Simulated performance of Al-enhanced topology optimization (normalized values)

Case

Compliance error (%) Dice similarity Runtime reduction (%)

Cantilever beam 3.2
MBB beam 4.6
L-bracket 4.1
Three-hole plate 5.3
Wing-rib segment 4.8

0.94 82
0.91 79
0.92 83
0.89 76
0.90 81
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It is indicative of the compliance error, dice similarity, and runtime reduction in standard SIMP optimisation. The CNN
surrogate, in general, was able to achieve a compliance error of less than 6%, approximately 0.9 dice similarity, and a
runtime reduction of around 80%. The results can be better understood if we compare the present method with recent
Al-based TO frameworks (Sosnhovik & Oseledets, 2019; Yildiz, Acar, & Koziel, 2021; Rawat & Wang, 2022; Zhang et al.,
2022) by looking at Table 2. The hybrid CNN-FEA method turned out to be as accurate as other methods and faster
than them, thus confirming the method's real-time lightweight design application potential.

Table 2: Comparative summary of surrogate-based topology-optimization frameworks

. Compliance Runtime S
Study Model Type Domain Error (%) Reduction (%) Key Limitation
Sosnovik & . _ - Lo
Oseledets (2019) CNN (2D) Cantilever 8-10 =~ 95 Limited load diversity
Yildiz et al. (2021) cGAN (3D) MBB 6-8 =90 Training instability
g%gg; & Wang Encoder—decoder 2D generic 5 80 Requires tuning per case
Zhang et al. (2022) CNN + Gradient 2D 3.4 70 Dataset-dependent
9 ' refinement accuracy
This work CNN (U-Net) + FEA 2D / quasi- <5 80-85 Generalization to
refinement 3D complex geometry

From Table 2, the proposed hybrid surrogate shows competitive accuracy and greater computational efficiency,
confirming its suitability for real-time lightweight design.
3.2 Visual and Structural Comparison

CNN SIMP
Cantilever L-bracket
L L
Dastancning True topology

Figure 2: Visual comparison of predicted vs. optimized topologies (cantilever and L-bracket)

Figure 2 illustrates the comparison between CNN- smoothing of the low-stress regions. The resulting
predicted and SIMP-optimised topologies for (a) a topology after 10 hybrid refinement iterations visually and
cantilever beam and (b) an L-bracket configuration. CNN guantitatively resembles very much the ground-truth
predictions effectively identify primary load paths, SIMP solution. These experiments put forward the
material connectivity, and void placement with only slight hypothesis that deep-learning models are capable of
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understanding the physical nature of the problem and
thus can predict stress-flow distributions very accurately
(Sosnovik & Oseledets, 2019; Liu et al., 2023).

3.3 Effect of Hybrid Refinement

Topologies of CNN-generated local areas as first
ideas of the work decreased the compliance error from
ca. 5% to less than 2%, the run time still being 10x faster
than that of complete optimisation. The statementis in line
with the observation of Zhang et al. (2022), who also
found that initiation of refinement by CNN may save up to
70% of iterations. The results reported here provide
evidence that a partial physics-based correction can
effectively close the gap between a data-driven inference
and the exact mechanical equilibrium.

3.4 Manufacturability and Structural Integrity

Morphological filtering in the post-processing stage
guaranteed that minimum feature sizes were respected in
95% of the test cases, thereby avoiding fragile geometries
and ensuring load-bearing continuity. While the CNN
inherently structured itself to produce manufacturable
layouts, occasional overhang violations could be
observed, in line with the results of Gaynor and Guest
(2016), who were the first to notice this phenomenon.
Therefore, future research should consider incorporating
manufacturing-differentiable constraints or developing
build-angle-aware loss functions. Into the training process
(Chen & Guo, 2023). The integration would make Al-
generated designs more compatible with the standards of
additive-manufacturing feasibility.

3.5. Generalisation and robustness

CNN was able to generalise the model from a different
set of 500 load-boundary configurations that were not
used in training. The CNN kept an average Dice similarity
of 0.88 and a compliance error of less than 7%. The error
percentage was over 10-12% only for very
asymmetrically supported cases, which means that the
situations that are out of distribution still pose a challenge.
The reason for such a limitation can be elucidated by such
scenarios being far away from the training data manifold.
Jie Liu et al. (2023) have demonstrated that the use of
physics-informed loss terms and graph-based encodings
(GNN) can significantly improve the network's robustness
in those regimes.

3.6 Computational Scalability

The time to predict scales linearly with mesh size. For
instance, it was less than 0.5 s for a 200 x 100-element
problem on a single GPU. On the other hand, full SIMP
optimisation time scales sharply cubically with the
problem size, thereby confirming the surrogate's great
scalability advantage. With the hybrid CNN—FEA model,
the 15x speedup was achieved for relatively coarse 3D

test domains (50 x 50 x 25). The performance
improvement is in line with what was reported for GPU-
accelerated work in Chen and Guo (2023). These findings
help build the case for the strong potential application of
the method in real-time digital twin systems and
generative design tools.

3.7 Sensitivity Analysis

The authors performed an ablation experiment by
varying dataset size (from 1,000 to 10,000 samples) and
found that the improvements level off after 6,000 cases.
The compliance error stabilised at around 4%, which
leads to the conclusion that moderate datasets are
sufficient for the model to learn effectively. They also
found that data augmentation accounted for another =1%
of the gain in Dice similarity, which is consistent with the
findings of Sosnovik and Oseledets (2019). When the
compliance-weight coefficient was increased (A > 0.2),
only small returns were obtained, thus confirming the
current hyperparameter setting represents a good trade-
off between the geometric and the mechanical aspects of
the model.

3.8 Discussion and Broader Implications

The combined findings confirm that Al-powered
topology optimisation can closely imitate physics-based
solvers while significantly reducing computation time. The
CNN surrogate is effective at internalising load-response
relationships, resulting in mechanically plausible and
manufacturable topologies. However, the authors identify
several major issues that remain unresolved:

i. Interpretability: CNNs are black-box predictors with
very limited physical transparency (Shin et al., 2023).

ii. Generalisation: The performance deteriorates for the
geometries not trained and for extreme boundary cases.
iii. Manufacturing realism: Physical and geometric
constraints must be introduced to support the implicitly
learnt ones. Notwithstanding these issues, the hybrid Al—-
FEA paradigm provides a feasible link between real-time
design exploration and high-fidelity optimisation; thus, it
can be regarded as a key enabler of next-generation
lightweight design methodologies in the sectors of
aerospace, automotive, and mechanical engineering.

4. CONCLUSION

This study developed and comprehensively evaluated
an Al-enhanced topology optimisation (TO) framework
that integrates deep learning surrogates with finite
element analysis (FEA) to achieve rapid, data-driven
lightweight structural design. By embedding convolutional
neural network (CNN) architectures within a physics-
based optimisation loop, the framework -effectively
resolves one of the major bottlenecks in traditional
structural optimisation—the computational burden of
iterative finite-element simulations inherent in methods



such as SIMP and level-set algorithms. The results
demonstrate that a CNN surrogate trained to capture the
complex relationships between geometry, loading
conditions, and optimal material distributions can produce
near-optimal density layouts within a fraction of the time
required for conventional optimisation. When combined
with limited refinement iterations, the hybrid AlI-FEA
approach preserves mechanical fidelity while reducing
computation time by up to 80%, maintaining compliance
within 5% of classical solutions. The research establishes
a robust AI-FEA hybrid workflow capable of delivering
high-quality preliminary designs in real time, significantly
improving efficiency in aerospace, automotive, and
robotics applications. The trained surrogate exhibited
strong generalisation performance on unseen load and
boundary  conditions, achieved manufacturable
geometries that satisfied feature-size constraints in most
cases, and showed scalability with inference times under
0.5 seconds for moderate-size meshes. Overall, this work
confirms that artificial intelligence can enhance structural
design processes by uniting computational efficiency with
physical consistency, thereby paving the way for practical,
real-time topology optimisation within digital-twin and
generative-design environments.
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