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Malaria is widespread in Africa and causes untold mortality and morbidity. It's sensitive to climate and 
this has raised considerable concern over the implications of climate change on future disease risk. 
The problem of malaria vectors (Anopheles mosquitoes) shifting from their known locations to invade 
new zones is of important concern. The objectives of this paper were to; i) established relationship 
between climate and malaria incidence, ii) develop climate induced malaria incidence zonal models, 
and iii) project malaria incidence occurrence in the major sub climatic zones of Uganda. Correlation 
and regression analysis was used to determine the climate drivers of malaria incidence and built 
models using GenStat 14

th
 edition. Climate data were downscaled using Statistical Downscaling 

Model (SDSM v 5.1.1) and HadCM3 B1 scenarios, and using the zonal models. Malaria incidence was 
projected. The results show that relative malaria incidence was most correlated with minimum 
temperature in Western and Northern regions (r=0.818 and r=0.651; respectively), and with relative 
humidity at 06:00 (r=0.692) in the Central region. Relative malaria incidence for the different zones can 

be modeled and predicted as;                                  (R
2

adj=0.656) 

,                                                                     (R
2
adj=0.581), 

1                                                                            
                       (R

2
adj = 0.404);  for the Western, Central and Northern regions; 

respectively. The projected malaria incidence is likely to gradually decrease from 2020s to 2040s, and 
then increase until 2090s across the three major sub climatic zones of Uganda with the western and 
northern regions experiencing the highest and lowest incidence respectively, in the business as usual 
scenario. However, these projected incidences will present similarities in terms of periodicity and the 
peaks that will be lagged from the cold/wet seasons with different regions presenting relatively 
different patterns and trends with peak malaria incidences.  
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INTRODUCTION 
 
Malaria is a mosquito-borne disease that has afflicted 
humans globally for thousands of years, killing over 2.7 
million people annually (Pattanayak et al., 2003). The 
disease is most prevalent in tropical and subtropical 
regions of the world, especially in Sub-Saharan Africa 
(SSA), South and Latin America, Southeast and Central 
Asia (Prothero, 1995). It continues to be the single 
largest threat to child survival in SSA (WHO, 2008).  

Malaria can cause lasting side-effects, which affect 
individual development, mainly through anemia, 
neurological and physiological sequel, as well as the risk 
of infection with the human immune-deficiency virus 
(HIV) following blood transfusion (Snow et al., 1999a). 
Sachs and Malaney (2002) also noted that malaria 
retards economic and social development through 
effects such as reduced working hours due to sickness  
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or attending to the sick, income spent on financing 
health care, which in turn lead to impacts at national 
level because of massive health care budgets, reduced 
productivity of the work force but even reducing over 5% 
of the economic growth of endemic countries in SSA.  

In Uganda, clinically diagnosed malaria is the leading 
cause of illness and death, accounting for 25-40% of 
outpatient visits at health facilities, 15-20% of all hospital 
admissions, and 9-14% of all hospital deaths (MOH, 
2001, 2012a; Moses, 2012; Namanya, 2000). During the 
last decade, for example; the number of malaria cases in 
government health centers countrywide rose by 13% 
from 2,923,620 in 1999 to 3,311,088 in 2000. Since 
1995, the number of malaria cases has been rising every 
year (Kiwanuka, 2003; MOH, 2012b). On average, a 
person in Apac district near Lake Kyoga would receive 
more than 1,500 infectious bites per year (Lynch et al., 
2005). The major causes of malaria are linked to the 
environment, weather and climatic factors, mainly 
precipitation, temperature and humidity (Gagnon et al., 
2002; Norris, 2004; Patz and Lindsay, 1999; Vittor et al., 
2006). Previous research has shown that climate is the 
key factor in explaining RMI in different regions 
(Campbell-Lendrum and Woodruff, 2006; Craig et al., 
1999; Mantilla et al., 2009). An association between 
climate variability and the epidemics of malaria has been 
declared in seven cities of the East African highlands in 
Ethiopia and Kenya (Wandiga et al., 2006). Mantilla et 
al. (2009) noted that there is an association between the 
incidence of malaria and certain climatic variables, 
especially temperature and rainfall. An increased 
temperature of just 0.5

O
C can significantly increase the 

abundance of mosquitoes, sometimes up to 100%. The 
increase in temperatures shortens the larval 
development, decreasing the amount of time required for 
the adult mosquitoes to spread malaria and allowing for 
the development of more mosquitoes (Patz and Olson, 
2006; Renate, 2009). 

The relationship between different vectors of malaria 
and their environment vary greatly around the world, but 
due to the severe health and economic cost of malaria 
epidemics, there is still a growing need for methods that 
will help to understand the influencing factors, allow 
forecasting, early warning, so that more effective control 
measures may be implemented (Alemu et al., 2011). 
Although both climate and weather variables were liable 
such as to play a major role in initiating epidemics, there  
is limited analysis of their association with the epidemic 
transmission parameters has been undertaken in 
Uganda (Anyamba et al., 2006). Mathematical models 
would provide powerful tools for appropriate 
interventions and eradication strategies in the future, but 
these require realistic modeling of the malaria 
transmission dynamics and its response to climatic 
variables. This paper was intended to establish the 
relationship between climate variables and RMI in the  

 
 
 
 
three major sub climatic zones of Uganda; develop a 
climate induced RMI models for major sub climatic 
zones of Uganda; and project future RMI trends for the 
periods of 2020-2039, 2040-2059, 2060-2079, 2080 and 
2099 in the major sub climatic zones of Uganda. 
 
MATERIALS AND METHODS 
 
Description of the study area 
 
This study was conducted in three climatic zones of 
Uganda. Uganda  lies astride the equator, between 
latitudes 4

o
 12´ N and 1

o
 29´ S and longitudes 29

o 
34´ W, 

and 35
o 

0´ E with an area of 241,550.7km
2 

and an 
estimated current population of 34.1 million in July 2012 
(UBOS, 2012).  Temperatures are in the range of 15

o
 - 

31
o
 C. More than two-thirds of the country is a plateau, 

lying between 1000 – 2500 meters Above Sea Level 
(ASL) but with a minimum and maximum altitude being 
620 and 5110m ASL respectively (UBOS, 2012). 
Uganda’s climate is tropical, moderated by its high 
altitude with little annual variations in temperature. The 
seasonal rainfall is driven mainly by the migration of the 

Inter‐Tropical Convergence Zone (ITCZ), a relatively 
narrow belt of very low pressure and heavy precipitation 
that forms near the Earth’s equator.  The exact position 
of the ITCZ changes over the course of the year, 
migrating southwards through Uganda in October to 
December, and returning northwards in March, April and 
May causing  two distinct wet periods – the ‘short’ rains 
in October to December and the ‘long’ rains in March to 
May. Climate data from Kabale, Entebbe and Gulu 
towns are representative of the three regions (Basalirwa, 
1995; Mwesigwa and Mathenge, 2007; UCE, 2004) 
figure 1 and table 1. 

 
 
Figure 1: Location of Uganda and the three sub climatic zonal 

regions under study 
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Table 1 Description of sub climatic zonal representative towns in Uganda 
 

Sub climatic zones Towns Latitude 
(
o
) 

Longitude 
(
o
) 

Elevation 
(m)   

 Rainfall 
(mm/year) 

Geographic 
Description 

High plateau Central, S 
&SE  

Entebbe (B) 0.058 32.467 1140 1575-1728 Lake Region 
 

Southern &SW 
highlands 

Mbarara (A) -0.617 30.65 1400 946-1242 Southern Highlands 

Northern Savanna/ 
North, NE &NW 

Arua (C) 3.017 30.917 1180 1425-1603 Northern Savanna 

 
 
 
Establishing the relationship between climate 
variables and RMI in the three major sub climatic 
zones of Uganda 
 
Laboratory confirmed aggregated malaria cases from the 
hospitals in each of the three major sub climatic zonal 
representative towns from 1987 to 2012 were obtained 
from the regional hospitals. The estimated population for 
each of the zonal representative towns was obtained in 
the same period from the Uganda Bureau of Statistics 
(UBOS). The corresponding missing annual population 
data were obtained using the equation; Pn= PO(1+r)

n
, 

where; PO is current annual population, Pn is missing 
annual population for the n

th 
year, r is the population 

growth rate, and n is the number of years from the 
referenced year 2013 (UBOS, 2012). The number of 
annual malaria cases for each zonal town was divided 
by the corresponding annual population and finally 
expressed as a percentage to get RMI. 

Daily cumulative precipitation (Rainfall), maximum 
temperature (Max Temp), mean temperature (Mean 
Temp),  and minimum temperature (Min Temp), relative 
humidity at 12:00 (RH: 12:00) and 06:00 (RH: 06:00) 
O’clock, and mean relative humidity (Mean RH) were 
obtained from the nearest meteorological stations for 
each of the towns for the period; January 1987 to 
December 2012, and their monthly averages were 
computed. The missing and inconsistent data was filled 
and corrected using advanced spatial interpolation 
techniques as  described by Grieser (2006). Thus in 
Arua, Mbarara, and Entebbe towns;  Shepards method, 
Modified Inverse Distance Weighted Average (IDWA), 
and Thin-Plate Spline methods were used due to the low 
land plateau and sparsely distant stations, high altitude 
variations, and localized Lake Victoria crescent 
conditions; respectively.  

The relationship between RMI and weather variables 
was determined using regression technique in GenStat 
14

th
 edition. Pearson’s correlations were computed to 

determine the type and strength of the relationships 
between climate parameters and RMI after performing 
normality tests and checks on each of the variables. One 
month lag effect for RMI, rainfall, mean temperature and 
relative humidity was also computed and included in 
modeling. The long term annual variations and seasonal 
effects/changes in RMI were also included. Linear 
multivariate regression analysis was employed to 
develop independent climate induced RMI regional 

models for each sub climatic zone. To avoid 
multicollinearity and autocorrelations among and 
between the climatic variables, collinearity diagnostic 
tests were computed, and the climate parameters that 
significantly influenced RMI with poor collinearity among 
them were used to generate the RMI models for the 
different major sub climatic zones (Alemu et al., 2011). 
To independently validate the developed zonal models, 
both spatially and temporally, it was convenient that 
these RMI predictive models be tested using 
independent data sets for the same spatial and temporal 
resolution in other towns different from the ones used for 
model development in the same sub climatic zones. 
Therefore, malaria and climatic data from 2000 to 2010 
were collected in the second sub climatic zonal 
representative towns of Kabale, Kampala and Gulu for 
zones A, B and C; respectively.  
 
Projection of future RMI trends for the periods of 
2020-2039, 2040-2059, 2060-2079, 2080 and 2099 in 
the major sub climatic zones of Uganda 
 
The zonal climate projections used for the RMI 
simulations were downscaled using Statistical 
Downscaling Model (SDSM v.5.1.1) and the UK Hadley 
Centre model (HadCM3) runs with high (A2) and low (B) 
emission scenarios for Arua, Mbarara and Entebbe 
towns. The HadCM3 comprises of projected 20 year 
averages of monthly temperature and precipitation data 
(IPCC, 2001; New et al., 1999). 

In addition to the regression techniques used to model 
the relationship between climate and RMI, the Average 
Absolute Error (AAE) between the simulated and the 
observed was computed for each of the zonal 

representative town using:           

 
, (Diriba, 2006; 

Vandermeer, 2010). Where; O is observed RMI. E is 
predicted RMI, n is the number of observations. This 
was to avoid changes in the direction of the difference 
between observed and simulated. 
 
 
RESULTS 
 
Relationship between climate and relative malaria 
incidence in Uganda 
 
Figure 2 shows the relative malaria incidence trend for 
the different years in the three study regions of Uganda.  
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Figure 2: Inter-annual variations of relative malaria incidence trends in Uganda, 1987-2012 

 
 

Table 2: Long term seasonal effects on mean relative malaria incidence in Uganda 
 

Seasonal effects on mean RMI (+0.05)  Zone A Zone B Zone C 

Long dry period (December to February)  3.63 3.97 4.29 

Long rains (March to May)  3.76 4.10 4.49 

Short dry  period (June to August)  3.16 3.49 3.93 

Short rains (September to November)  3.63 3.97 4.50 

p-value  0.036 0.043 0.035 

 
Table 3: General correlation between climatic variables and significance of the linear relationship with monthly relative 

malaria incidences in each of Uganda’s sub climatic zonal towns, 1987-2012 
 

Towns (Climatic zones) Mbarara (Zone A) Entebbe (Zone B) Arua (Zone C) 

Correlation Coefficient Pearson r P-value Pearson r P-value Pearson r P-value 

Max Temp (
O
C) 0.282 0.081 0.135 0.255 0.286 0.079 

Min Temp (
o
C) 0.818 0.000 0.648 0.000 0.651 0.000 

Mean Temp (
o
C) 0.730 0.000 0.482 0.006 0.568 0.001 

Rainfall (mm) 0.095 0.322 -0.368 0.203 -0.286 0.078 
Mean RH (%) 0.228 0.132 0.576 0.001 0.085 0.341 
RH: 06:00 (%) 0.087 0.337 0.646 0.000 0.112 0.293 
RH: 12:00 (%) 0.406 0.020 0.300 0.068 0.048 0.407 

 
 
 
RMI in Uganda followed a seasonal pattern between the 
wet and dry months with RMI peaks in the months after 
the rainy seasons, and a long term inter annual trend 
that was not climatic in nature. In addition, it has been 
increasing over the year since 1987 for all the months. 
For the last twenty five years, RMI has doubled. 
February tended to have the lowest RMI. Higher values 
of RMI were observed in May and June for first five 
years and the late five years of 1990s; respectively.  

RMI varied from year to year (p<0.001) and so was for 
the season. Although RMI has been increasing over the 

year, the general inter-seasonal trend has been 
decreasing instead since 1987. However, there was a 
statistically significant (p=0.00) negative lag effect 
between the wet and dry periods with peak RMI 
occurring just after the peak rainfall. The inter-seasonal 
variations in the mean RMI was also significant in all the 
zones (Table 2).  

Table 3 shows the correlation between climate 
variables and the significance of their relationships with 
RMI. In Climatic Zone A, all the climatic variables were 
positively correlated with RMI.  Mean and minimum  
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Figure 3:  provide table legend??? 
 

 
 

Figure 4: provide table legend??? 

 
 
temperature was strongly (p=0. 000), and significantly 
linearly related to RMI. There was weak and statistically 
insignificant relationship between Max Temp, rainfall, 
Mean RH and RH: 06:00 with RMI. RH: 12:00 showed 
moderate and statistically significantly (p=0.020) 
correlated with RMI.  

In Climatic zone B, all the climatic variables were 
positively correlated except rainfall that was negative 
and not significantly linearly related (p=0.203) with RMI. 
There was a strong correlation and significant 
relationship between Min Temp (p<0.001), and RMI. 
Similarly mean RH (p=0.001), and RH: 06:00 (p<0.001) 
were strongly related with RMI. However, there was a 
moderate correlation but statistically significant 
relationship (p=0.006) between Mean Temp and RMI. 
RH: 12:00 was weakly and not significantly linearly 
related (p=0.068) with RMI. 

In Climatic Zone C, Min Temp and Mean Temp were 
strongly correlated with RMI with (p=0.000) and 
(p=0.001); respectively. Other climate variables were 
statistically insignificantly (p>0.005) related and weakly 

correlated with RMI, except rainfall that was not 
correlated (p=0.078) with RMI. 
 
 
Climate induced relative malaria incidence models 
for the selected climatic zones of Uganda 
 
RMI can be modelled using the equations below: 
For Zone A (R

2
adj = 0.656);                   

         .The model validation results showed a 
strong correlation and significant relationship between 
the observed and simulated RMI with Average Absolut 
Error (AAE) and R

2
adj of 0.362 and 0.996; respectively. 

              0.9042RMI_Predicted + 0.6384 (Figure 
3). 
For Zone B (R

2
adj = 0.581);                    

                          .The model validation 
results also showed a strong correlation and significant 
relationship between the observed and simulated RMI 
with AAE and R

2
adj of 0.331   and 0.980; respectively. 

RMI_Observed = 0.924RMI_Predicted + 0.3901 (Figure 
4). 
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Figure 5: provide table legend??? 

 
 

 
 

Figure 6: Projected changes in RMI in zone A (Mbarara town), Uganda 

 
 
For Zone C (R

2
adj =0.404);                   

                                         
         .The model validation results showed 
moderate correlation but convincingly good relationship 
between the observed and simulated RMI with AAE and 
R

2
adj of 0.160 and 0.968; respectively. RMI_Observed 

=1.047RMI_Predicted - 0.0306 (Figure 5) 
 
Projected climate change induced relative malaria 
incidence for the major sub climatic zones of 
Uganda 
 
The projected RMI will increase gradually from 2060 to 
2099 with relatively high inter annual and seasonal 

variability in zone A. The projected RMI presents a 
temporal periodicity, and a lag period that coincide with 
the peak temperature anomalies. For every degree rise 
in the projected mean temperature in zone A, RMI 
increases by 0.11% and vice versa (Figure 6). 

The projected RMI in zone B is likely to behave 
similarly to the trend observed in zone A with relatively 
more pronounced fluctuations. Mean Temp was the only 
significant climate variable in predicting RMI with a 
percentage increase of 0.29 per degree rise in mean 
temperature and vice versa. From 2020 to 2040, the RMI 
peaks will decrease with the lowest incidence in June 
and December. From 2040 to 2099, RMI will increase  
gradually in seasonal cyclic and annual trend 

Figure 5 Independent climate induced RMI model validation and testing for zone C 
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Figure 7: Projected changes in RMI in zone B (Entebbe town), Uganda 

 
 

 

 
 

Figure 8: Projected RMI in zone C (Arua town), Uganda 

 
 
fluctuations (Figure 7). 
For Zone C, the projected RMI will have similarities in 
terms of periodicity, and small lag between cold period 
and RMI peaks. This is projected to increase significantly 

from the long term averages from 2040 to 2099 but also 
exhibiting seasonal cyclic and annual trend fluctuations 
throughout under high and low emission scenarios 
(Figure 8). 
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DISCUSSION 
 
There was correlation between RMI and climate 
variables in all the climatic zones with minimum 
temperature being the strongest correlated among the 
climatic variables. This is consistent with results of 
similar studies conducted in Ethiopia by Alemu et al. 
(2011), Ghana by Tay et al. (2012), and Burundi by 
Loevinsohn (1994) which suggest that minimum 
temperature is the most important factor for malaria 
transmission in high altitude regions while in low altitude 
regions its rainfall, relative humidity, mean and maximum 
temperatures that greatly influence malaria over other 
climatic factors.  

The influence of climate on RMI was highest in zones 
A and B, and lowest in zone C. This is partly attributed to 
the climatic differences in the annual rainy seasons 
leading to the different transmission levels between the 
zones with zones A and B having a more favorable 
climate for mosquito development and malaria 
transmission throughout the year than C, that has one 
long favorable season annually. This is in agreement 
with the research findings in Ghana by Tay et al. (2012), 
West Africa by Usher (2010), East Africa by Omumbo 
(2004) and Nigeria by Ayanlade et al. (2010) which 
conclude that malaria transmission season is highly 
dependent on the frequency and duration, annual rainy 
seasonal cycles with longer seasons, allowing more 
intense transmissions while short seasons favor more 
frequent  infections and higher incidence for any given 
locality.           

Secondly, the results can also be explained by the 
uneven distribution of non-climatic factors that also 
contribute to malaria transmission besides climate. The 
long term civil by the Lord’s Resistance Army (LRA) from 
the late 1980s until of recent in the Northern part of 
Uganda which retarded delivery of drugs, hospitals, 
infrastructure and the related malaria prevention and 
control programs  partly explains the high RMI threat in 
Arua than in Entebbe and Mbarara. Similar observations 
were made by AFM (2007) that conclude that Uganda’s 
brutal dictatorships inhibited post-colonial development 
and retarded infrastructure development in most parts 
leading to the arising of malaria and other vector-borne 
diseases over the past decades. This was aggravated by 
the inadequate planning, lack of malaria early warning 
systems, and failure by the ministry of health to take 
climate change into account as the key threat to malaria 
transmission has worsened the malaria situation to 
reach epidemic levels in more than 95% country (AFM, 
2007; Kiwanuka, 2003; Namanya, 2000; Yeka et al., 
2005). 

For the three zones, projected RMI will present a 
similarity in terms of periodicity and the peaks that will be 
lagged from the wet season. Different regions present 
different patterns and trend with peak RMI in zone A  

 
 
 
 
shifting from March and October to May and November 
in the period of 2020 to 2040, and 2060 to 2099 
respectively whereas in the zone B, the RMI peak will 
occur in April and November for the period of 2020 to 
204. In the zone C, the peak RMI is projected to occur in 
May for the period of January 2020 to December 2099. 
However, zones A and B will have the same pattern and 
trend deviating in terms of peaks while no significant 
deviations from historical RMI is likely to be observed in 
the Northern region from January 2020 to September 
2060, with a steady increase from October 2060 to 
December 2099.  

These projections are supported by the results of 
Tanser et al. (2003) and Huynen et al. (2013) which 
suggest a general increase in the projected malaria 
transmission and incidence in Africa from 2000 to 2100 
due to global warming and climate change effects. 

The projected RMI in the zone A will be relatively 
higher than that of zones B and C. This is partly because 
of the higher projected increase in minimum temperature 
and more adverse climate change effects due to global 
warming affecting mostly zones A and B than zone C 
which is expected to have least effects in contrast. This 
is consistent with the observations in Uganda made by 
NEMA (2009) and Huynen et al. (2013) which suggest 
that because of climate change, some disease vectors 
like Anopheles mosquitoes move to higher altitudes, 
thus spreading malaria in areas of Kabale and Mbarara 
(zone A) than before. Elsewhere, similar observations 
were made in Africa by Tanser et al. (2003), East Africa 
by Omumbo (2004), Germany byHoly et al. (2010), and 
Ethiopia by Alemu et al. (2011) which suggest that global 
warming is responsible for malaria epidemiological shifts 
from the lowland to the highland regions that are now 
becoming warmer and more favorable for mosquito  
breeding. 
 
 
CONCLUSION 
 
In light of the above results and discussions, it is 
concluded that a correlation exists between RMI and 
climate parameters in all the three regions; particularly 
the mean and minimum temperature in the Western; 
minimum temperature, mean relative humidity and 
relative humidity at 06:00 in the Central region, and 
minimum and mean temperature in the Northern region. 
Key determinants of RMI were; minimum temperature in 
the Western region, minimum temperature and relative 
humidity at 06:00 in the central region, and rainfall, mean 
relative humidity, minimum and maximum temperature in 
the northern region. All affect RMI positively except 
rainfall.  RMI is projected to increase gradually from 
2020s to 2070s and double by 2090s across the three 
major climatic zones of Uganda with the Western and 
Northern regions experiencing the highest and lowest  
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RMI; respectively in the business as usual scenario. This 
projected RMI will present a similarity in terms of 
periodicity and the peaks that will be lagged from the wet 
season with different regions presenting different 
patterns and trends with peak RMI. There will also be a 
shift in the projected RMI from their traditional lowland 
regions of the northern and north eastern to highland 
regions of the south and south western parts. This will 
be as a result of anthropogenic climate change 
associated with increase in temperature (highest S&SW 
highlands), heavy rains and flooding providing more 
conducive conditions for the breeding and spread of 
malaria vectors especially the mosquitoes that will cause 
epidemiological shifts from low land to highland areas.  

It is therefore recommended to establish a strong 
collaboration between the Ministry of Health and climate 
scientists for the development of strong systems of 
surveillance and early warning in order to manage the 
current and future malaria epidemics not only in Uganda 
but also in East Africa. There is also need to develop 
higher resolution validated models and digitized GIS 
stratification maps linking climate and RMI at the village 
scale so as to identify more accurately those populations 
at RMI risk for effective and timely malaria management. 
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