Full Length Research

# Physiological Response of Soybean [*Glycine max* L. Merril] Genotypes to Drought-induced Stress: Preliminary Screening for Drought under South Sudan Agro-ecological (Ironstone/Mountains) Conditions

<sup>\*1</sup>Peter Batali Samuel Gama, <sup>1</sup>Alla Joseph Vuga <sup>2</sup>Godfree Chigeza

<sup>1</sup>Department of Agricultural Sciences, School of Natural Resources and Environmental Studies (SNRES), University of Juba, P.O. Box 82 – Juba, South Sudan

<sup>2</sup>International Institute for Tropical Agriculture (IITA), Ibadan, Nigeria \*Corresponding author, Email address: <u>minyolika@gmail.com</u>

## Accepted 16<sup>th</sup> March, 2020.

Drought stress is a major environmental factor that adversely limits the growth and the production of crops. In order to screen 18 soybean genotypes, an experiment was conducted in University of Juba, (CNRES), Department of Agricultural Sciences Experimental Unit with an objective of screening 18 soybean accessions/genotypes for drought tolerance at two separate experiments (non-drought stress and drought stress sites) based on randomized complete block design (RCBD) with three replications. The data were collected on plant height (cm), root length (cm), biological yield (biomass in g), number of pods per plant, number of aborted pods, number of seeds per plant, seed weight per plant (g), Grain yield per plot (2.5 m<sup>2</sup>), Harvest index (HI) and 100 seed-weight (g) at harvest. The result showed that drought stress is an important factor in growth and yield reduction especially when drought stress occur at reproductive stages such as initial pod filing, beginning of seed formation and full seed stages is responsible for yield reduction compared to non drought stress conditions. Furthermore, the results also indicated that drought stress affect all the morphological and reproductive parameters and the significant differences exist among the soybean accessions at (P<0.05) under both non- drought stress (ND) and drought stress (DS) conditions except, root length under non drought stress and the harvest index under drought stress condition. Drought stress also decreased the plant height and dry weight by 15% and 48.3% respectively and increased the root length by 19.4% and also adversely reduced the reproductive components such as number of pods/plant (44%), number of seeds/plant (58.4%), seed weight/plant (55%), grain yield/plant (60.3%), 100-seed weight (17.4%) and harvest index (24.4%). The most affected parameter by drought stress was the yield/plot by 60.3% reduction. Moreover, the results also indicated clearly that the effect of drought stress on the final yield was due to reduction in reproductive components. Although drought stress had great impact on the final grain yield, some accessions such as TGx 2010–15F, TGx 2006–3F, TGx 2008–4F, TGx 2010–12F, TGx 2008–12F, TGx 2004–3F, TGx 2007–11F were less affected by drought stress as they showed high yield under both non-drought stress (ND) and drought stress (DS) conditions hence exhibit tolerant to drought stress. This clearly indicated that the respond of different accessions to drought stress varies from one accession to another and identify the following TGx 2004–13F. TGx 1987– 62F, TGx 1448–2E, TGx 2010–3F, TGx 1485–1D, Local–107 as drought susceptible. It should be noted that, the narrow genetic diversity in the soybean accessions would likely not provide a wider genetic variability in response to drought stress. The latter suggests further research and use of more accessions from other regions or agro-ecological zones.

**Keywords:** Drought stress, drought tolerance, susceptibility, soybean genotypes/accessions, morphological parameters, harvest index (HI), and reproductive components.

## INTRODUCTION

#### Background

Soybean [Glycine max (L.) Merrill] is an annual legume crop that belongs to the family Fabaceae which was cultivated as early as the 11<sup>th</sup> century in china (Hymonwitz and Shurtleff, 2005). It contain 20-22% essential amino acids, 40% protein and 18-22% oil of which 85% is cholesterol free (Malik et al., 2006). At present soybean are grown primarily for oil extraction and for use as a high protein meal for animal and poultry feeds (Singh and Shivakumar, 2010) and the soybean seeds contain high content of protein and oil which are used for making nutritious food products such as soymilk, miso, soyflour, soysauce and tofu (Fabiyi, 2006). Soybean also improves soil fertility by fixing the atmospheric nitrogen via symbiotic N<sub>2</sub> fixation and hence reduces the cost for purchasing inorganic N<sub>2</sub> fertilizer (Sinclair and Vadez, 2012). In addition soybean also has a medicinal value by reducing the risk of blood cancer, osteoporosis and heart diseases. Alternatively, Soybean is also reported to be used as raw material in industries for production of biodiesel, cosmetics, pesticides, hydraulic fluid and lubricants (Wanderi, 2012). Furthermore soybean shows a potential of reducing the Striga hermontica infestation in rotational system with cereals and it was reported that it increase maize yield by 90% (Carsky et al., 2000).

Soybean was first introduced to the Sudan in 1910 by the Colonial Garden and in 1949 it was introduced into Southwest Sudan to prevent the severe malnutrition in children, pregnant and lactating women and infants (Ibrahim, 2012). In fact, research in soybean started as early as 1925 at Gezira Research Station farm, Agricultural Research Corporation (Ngalamu *et al.*, 2013).

In spite of the various uses and wide adaptability, soybean is very sensitive to environmental condition especially the environmental factors such as; drought stress, salinity and heat stress that affects the growth and grain yield. Although the effect of various environmental factors interferes with the performance of crops, drought is the main limiting factor to soybean yield (Souza *et al.*, 2013). Drought stress is one of the most common environmental stress affecting plant growth and productivity (Boyer, 1982).

From crop production perspective, drought can be defined as inadequate water availability including precipitation and soil moisture storage capacity in quality and distribution during the life cycle of crop plant which restrict the expression of full genetic potential of the plant (Chopra and Paroda, 1986). Drought tolerance is the ability of crop plant to produce its economic product with minimum loss in drought stress environment relative to the water constraint free management (Mitra, 2001). According to Raheja (1966), 36% of the land area is classed as arid to semiarid receiving only 5-30 Inch of rainfall annually and the rest under goes temporary drought during the crop season.

Breeding for drought tolerance in legume has become a top priority especially in developing nations with low and erratic rainfall and with high incidence of malnutrition (Global Development Program, 2011). Hench those are the areas targeted for drought tolerance crops to minimize loss in yield by drought stress.

The mechanisms of drought tolerance act whenever plants have little or no means to avoid low water potential (Grace et al., 1981). According to Mitra (2001), mechanism of drought resistance can be categorized into three; First, drought escape which is the ability of a plant to complete its life cycle before sever soil and plant water deficits developed, secondly, drought avoidance which is the ability of a plant to maintain relative high tissue water potential despite a soil moisture deficit and thirdly, drought tolerance which is the capability of plant to withstand water deficit with low tissue water potential. Less has been known about the genetic mechanisms that control the molecular, physiological and morphological character of crop plant that are responsible for drought tolerance. The drought resistant trait and genes in crop plant is complicated and its expression is determined by the action and interaction of biochemical, physiological and morphological characters. The genes that are responsible for morphological and physiological trait and their location in chromosomes are not identified but their inheritance pattern and nature of gene action have been reported (Mitra, 2001).

According to Turner *et al.* (2001), yield stability under drought condition depends on the mechanism of drought tolerance that takes into consideration the yield variation in terms of trait affecting water use (WU), water use efficiency (WUE) and harvest index (HI) represented by the formula; Yield = WUXWUEXHI (Passioura, 1977; Blum, 2009). Deep rooting, osmotic adjustment and early vigor leading to early ground cover are trait associated with WU and WUE that contribute to greater yield through increase in total biomass which is then converted to yield via higher Harvest Index (HI). The sensitive reproductive process and translocation of reserve to grain trait also influence Harvest Index (HI) under drought condition (Bhatia *et al.*, 2013).

However many possible means have been tried and proposed by the researchers to improve

crops to drought tolerance but less has been achieved due to the following challenges; little knowledge about the physiological basis of yield in drought condition, limitation in technology for systematic phenotyping (Sinclair, 2011), lack of understanding of plant response to sever moisture stress (Burton, 1964), amount of time required to phenotype a large number of individuals (Verbree, 2012) and involvement of multiple genes at genetic level in the initiation of defensive mechanism makes it difficult to fully understand the genetic basis (Quisenberry and McMichael, 1991).

Due to various biotic and abiotic stresses, food productivity is decreasing and therefore minimizing these losses is one of the top priorities to ensure food security under changing climate (Anjum *et al.*, 2011). The losses from drought stress can be minimized by developing drought tolerance crop plants in drought prone environments.

However, there is little evidence or data on physiological response of legume (soybean) to drought stress and its implication on growth performance and grain yield under Greenbelt agro ecological zone or elsewhere in South Sudan. This substantiates the original purpose of conducting research in this area of study to provide insight into understanding the effect of drought stress in soybeans.

## **Objectives of the study**

This study was therefore, initiated to address the following objectives;

## **General objectives**

 To compare the performance of different genotypes of soybean under non-drought stress (ND) and drought stress condition (DS) during off season under irrigation.
 The present study was undertaken to identify suitable tolerant genotypes for improving yield of soybean under water stress condition in South Sudan especially in drought prone agro-ecological zones.

#### Specific objective

To screen 18 different genotypes of soybean for drought tolerance such that genotypes with full genetic potential can be recommended as drought tolerance genotypes for improvement and further production in different parts of South Sudan.

#### MATERIALS AND METHODS

#### **Experimental site**

The field experiment was conducted during the

2016 2<sup>nd</sup> season (August-December) at University of Juba, Department of Agricultural Sciences Experimental Unit, in Jubek State Southern part of South Sudan located at latitude of 31°35417'E, longitude 4°50529'N and altitude 400 m above sea level with the average annual rainfall 650 mm during the period of April and October within the Green belt agro-ecological zone. The soil of the site was sandy clay loam with the pH range of 7.8-8.5. The climate of the locality was tropical wet and dry with the maximum temperature of 35°C in the summer and around 29°C in cool season (University of Juba research data, 2013).

#### Experimental design for drought stress assay

Two separate experiments non-drought (ND) site and drought stress (DS) site were conducted based on Randomized Complete Block Design (RCBD) with three replications (Gomez and Gomez, 1984) to screen 18 genotypes of soybean [Glycine max (L.) Merrill] for drought tolerance. The total size of the field was 16 m  $\times$  20 m (320 m<sup>2</sup>) and divided in to two blocks with the size of 160 m<sup>2</sup> consisting of 3 replicates each with the distance of 40 cm between the blocks and each replicate consisted of 18 plots making a total of 54 plots per block. The size of the plot was  $2.5 \text{ m}^2$  and the distance between the plots was 40 cm. Two rows of sovbean seeds were sown manually on the shoulder of the plots at the distance of 60 cm between the rows and 16 cm between the plants. Each plot had 20 hills and 2 seeds were sown per hill at the depth of 2.5-4 cm manually using small pointed stick. Then latter provides plant density of 40 plants per 2.5 m<sup>2</sup>.

#### Experimental materials and procedures

#### **Plant materials**

The plant materials used in this experiment consisted of seeds of 17 soybean genotypes obtained from International Institute for Tropical Agriculture (IITA) and one soybean genotype from the local farmer in Juba, South Sudan. The soybean genotypes obtained from IITA were; TGx 1485–1D (Check early), TGx 2010–3F, TGx 1448–2E (Check medium), TGx 2004–10F, TGx 1987–62F(R-C heck), TGx 2007–11F, TGx 2004–13F, TGX 2008–2F, TGX 2007–8F, TGX 2008–4F, TGX 2006–3F, TGX 2008–12F, TGX 2011–3F, TGX 2011–7F, TGX 2010–15F, TGX 2004–3F and TGX 2010–12F. Local–107 (local check) obtained from the local farmer in Juba Munuki.

## **Cultural practices**

#### Land preparation

The shrubs and the plant debris of the previous crop (cowpea) in the field were cleared with hand tools to open up the field for easy operation and both the secondary and primary tillage which include harrowing, leveling, pulverization, making ridges and tilling was done manually using hand hoes, fork hoe and rake. Ropes, meter ruler and pegs were used in the process of making ridges and plot demarcation. The field was layout into blocks and plots, alleyways was left in between the blocks and plots for easy movement (operation). The field was irrigated one day prior to planting to moisten the soil.

#### Planting

After seed bed preparation and prior to sowing, the field was flooded with water to give maximum moisture in the soil to initiate seed germination. Sowing was done manually on the 14<sup>th</sup>/09/2016 during off season on the two rows of the plot with the distance of 60 cm between the rows and 16 cm between the plants. Two soybean seeds were sown per hills at the depth of 2.5–4 cm and then provide plant density of 40 plants per plot and seeds started germinating after 3days from the day of sowing and it took one week for all seeds to emerge.

## **Replanting /Re-sowing**

The genotype TGX 1448–2E (Check medium) was re-sown again on 30/09/2016 due to poor germination and hence less than 1% seeds germinated after re-sowing again.

#### Weeding

In this experiment, weeding was carried out for three times. The first weeding was done after a 14 days from the day of sowing and was done manually with hoe and hand pulling to rogue unwanted weeds like nut grass and coach grass that compete with the seedling. The second weeding was done after 26 days from the day of planting and the last weeding was done after 48 days from the day of planting and thereafter the canopy was large enough to suppress the weeds and it should be noted that herbicides were not used to control weeds in this experiment.

# Irrigation, water management and drought stress induction

Before initiation of drought stress, all plants from the both non-drought stress block and drought stress block were supplied with adequate moisture by using flood irrigation system to maintain the soil moisture favorable for plant growth. Drought stress was induced on plants by withholding the irrigation after 30 days from the date of planting when the plants were at the 5<sup>th</sup> trifoliate leaf development stage. Irrigation was carried on the drought stress (DS) block only once a week (after six days) and on the nondrought stress (ND) block, irrigation was carried after three (3) days and when necessary to avoid water deficit. And during the period of the experiment, rainfall was experienced from September to November.

#### Pests and diseases control

In this experiment, no chemicals were used to control pests and diseases, however, pests and disease were controlled mechanically by removing the suspected alternative host plant for pests and diseases around the field and maintaining field sanitation to keep out pests and diseases. In addition occurrence of pests and diseases were recorded.

## Harvesting

Harvesting was done when most of the pods turned brown (matured) and it started on 21/12/2016 with the early maturity genotypes and ended on 31/12/2016 with the late maturity genotypes. Harvesting was done manually by uprooting the whole plants from the field and tied in bundles and one sample plant selected randomly from each plots were tied inside the plastic bags, sun-air dried on plastic sheets ( $3 \times 5 m^2$ ) for obtaining other reproductive parameters (measurement); 100 seed weight, yield/plot, number of seed /plant and biomass (dry weight, DW).

## Seed processing

The pods of the harvested plants were threshed manually to obtain the seeds and the seeds were winnowed, sundried to lower the seed moisture content, weighted and packed in a box for temporary storage.

## **Data collection**

The data collected was based on the following parameters described below at harvest stage.

## Parameters:

#### Morphological parameters

#### Plant height (cm)

One plant was selected randomly from each plot at harvest stage. Plant height (cm) was measured using a tape measure from a point immediately above the soil surface to the top of the plant and then the mean of height per plant was obtained from the average of the single plants collected from each replicate.

## Root length (cm)

From the randomly selected plant from each plot three (3) replications per accession, the root length were measured with tap measure from the point below the soil surface to the tip of the root and then the mean length per plant was obtained in centimeter (cm) at harvest.

## **Biomass (Dry weight, DW)**

The whole plants were uproot from each plot three (3) replications per accession, collected, sun- air dried on plastic sheets  $(3x5 m^2)$  in the greenhouse and weighted to obtain dry weight (DW).

#### **Reproductive components**

#### Number of pods per plant

Number of pods for the randomly selected plant from each plot three (3) replications per accession was counted at harvest stage and the mean number of pods per plant was obtained from the average of the single plants sampled from each replicate of the experimental unit (plot).

#### Number of aborted pods per plant

Number of aborted pods from randomly selected plants was counted at harvest from each plot three (3) replications per accession and the mean

number of aborted pods per plant was obtained from the single plants collected from each replicate.

#### Number of seeds per plant

The number of seed was counted from the randomly selected plant from each plot three (3) replications per accession at harvest after the pods were threshed and the seeds per plants were obtained.

## Seed weight per plant (g)

From the randomly selected plants 3 reps per accession at harvest, the pods were threshed and the seeds were obtained and weight using electric weighing machine and mean weight per plant was obtained in grams (g).

## Seed yield per plot (g)

The whole plant from each plot were harvested from the field, sun –air dried, then the pods were threshed and the seeds were obtained and weight using electric weighing machine and mean weight per plot was obtained in grams (g).

## 100-seed weight (g)

A sample of 100 seeds was taken randomly from yield of each plot and then weighed to determine 100-seeds weight per each treatment.

## Harvest index (HI) (%)

The Harvest Index was calculated using the formula;

 $HI = \frac{seed \ yields \ (Grain \ yield)(g)}{Biomass \ (biological \ yield)(g)} \times 100. \ (Yagoub \ et$ 

#### *al.*, 2015).....Equation 1 **Drought intensity index (DII)**

Drought Intensity index (Dir) Drought Intensity Index was used to qualify the genotypes or accession to drought stress tolerance and it is calculated from the formula; (DII=  $1 - \frac{xd}{xn}$ )

.....Equation 2

#### Where,

DII = Drought Intensity Index

X<sub>d</sub> = Mean yield average across line under stress

 $X_{\rm p}$  = Mean yield average across line under non- stress condition

The DII values exceeding 0.7 indicate the severity of drought condition.

# Ranking was done based on yield reduction due to water stress

To determine the most desirable drought tolerant genotype, all soybean genotypes were ranked on the basis of their yield reduction due to water stress over non-stress (Chowdhury *et al.*, 2016).

#### **Statistical Analysis**

Data were subjected to Duncan's multiple range test (DMRT) (P < 0.05) for mean separation of the soybean genotypes using the software package (XLSTAT System, 2015) and Excel software was used to construct the graphs.

#### RESULTS

Drought stress is the major environmental factor affecting plant growth and physiology. The effect of drought stress on plant growth parameters (plant height, root length and biomass (dry weight), reproductive parameters (number of pods), yield parameters (number of seeds/plant, seed weight/plant, 100–seed weight, grain yield/plot, harvest index) and drought stress intensity index were presented as means are separated by DMRT (P < 0.05). The result revealed that all growth, reproductive and yield component were adversely affected by drought stress.

**Table 1:** Means comparison of plant height, root length and dry weight (biomass) of soybean accessions in nondrought (ND) and drought stress (DS) conditions.

|               |             | Means     |         |          |          |           |
|---------------|-------------|-----------|---------|----------|----------|-----------|
| Accession     | PH (cm)     |           | RL (cm) |          | DW/P (g) |           |
|               | ND          | DS        | ND      | DS       | ND       | DS        |
| TGx 1485-1D   | 36.33fg     | 32.33cd   | 32.33a  | 34.67abc | 625.83ab | 135.00bc  |
| LOCAL-107     | 36.33fg     | 33.33bcd  | 26.00a  | 30.67abc | 876.10a  | 136.40bc  |
| TGx 2010-3F   | 73.33ab     | 58.67a    | 25.00a  | 29.33bc  | 585.00ab | 171.13bc  |
| TGx 1448-2E   | 30.27g      | 28.33d    | 21.87a  | 30.30abc | 72.30b   | 17.87c    |
| TGx 2004-10F  | 81.33a      | 53.00abc  | 26.67a  | 30.43abc | 855.30a  | 288.27abc |
| TGx1987-62F   | 66.00abcd   | 39.00abcd | 33.17a  | 41.03ab  | 607.50ab | 135.70bc  |
| TGx 2007-11F  | 47.33cdefg  | 39.33abcd | 29.17a  | 38.17abc | 539.47ab | 286.70abc |
| TGx 2004-13F  | 72.67ab     | 52.17abc  | 25.80a  | 32.57abc | 924.67a  | 243.23abc |
| TG x 2008-12F | 54.83bcdef  | 49.17abc  | 25.33a  | 34.50abc | 445.80ab | 417.33ab  |
| TGx 2007-8F   | 53.33bcdefg | 51.33abc  | 23.33a  | 24.67c   | 896.7a   | 369.40abc |
| TGx 2008-4F   | 40.18efg    | 38.67abcd | 24.67a  | 28.00bc  | 540.20ab | 360.13abc |
| TGx 2006-3F   | 71.67abc    | 58.33a    | 25.33a  | 43.33a   | 701.93ab | 541.53a   |
| TGx 2008-2F   | 54.83bcdef  | 51.83abc  | 30.50a  | 40.00ab  | 855.20a  | 599.50a   |
| TGx 2011-3F   | 55.33bcdef  | 56.00a    | 33.00a  | 36.00abc | 640.07ab | 412.80ab  |
| TGx 2011-7F   | 41.83defg   | 39.67abcd | 30.33a  | 38.67ab  | 419.50ab | 254.20abc |
| TGx 2010-15F  | 61.67abcde  | 57.33a    | 27.67a  | 29.67abc | 533.53ab | 489.67ab  |
| TGx 2004-3F   | 56.00bcdef  | 55.00a    | 28.67a  | 32.00abc | 480.17ab | 456.20ab  |
| TGx 2010-12F  | 61.33abcde  | 53.53ab   | 28.67a  | 40.00ab  | 290.00ab | 274.33abc |

**Keys:** ND = Non-drought stress, DS = Drought stress, PH = Plant height (cm), RL = Root length (cm), DW = Dry weight (biomass) (g); Similar letters in each column shows non-significant difference according to DMRT (Duncan's Multiple Range Test) at 5% level.

Table 2: Effect of drought stress on the plant height, root length and dry weight of soybean accessions.

| Treatment          | Plant height (cm) | Root length (cm) | Dry weight (g) |
|--------------------|-------------------|------------------|----------------|
| Non drought stress | 55.23             | 27.64            | 604.93         |
| Drought stress     | 46.95             | 33.00            | 312.62         |
| Decrease (%)       | 15 (%)            |                  | 48.3 (%)       |
| Increase (%)       |                   | 19.4 (%)         |                |

The increase and decrease mean percentage shows that there is sharp increase (19.4%) of root length in response to drought stress. Plant height and the dry weight (biomass) are adversely affected by drought stress.

#### 3.1 Plant height (cm)

The result for plant height (PH) presented in (Table 1) Showed that non - drought stress (ND) had significant difference among the accessions in plant height due to the effect of genotype and it also indicated that, accession TGx 2004-10F (81.33 cm) and TGx 2004-13F (72.67 cm) had the highest plant height while accession TGx 1448-2E (30.27 cm) had the lowest height. Under drought stress (DS) there was also significant difference (P<0.05) recorded among the accessions due to their respond to drought stress and accession TGx 2010-3F (58.67 cm), TGx 2006-3F (58.33 cm), TGx-2010-15F (57.33 cm), TGx 2011-3F (56.00 cm) and TGx 2004-3F (55.00 cm) had the higher plant height and accession TGx 1448-2E had the lowest height. Therefore drought stress caused up to 15 % reduction in plant height (Table 2). This reaction can be caused by mechanism of drought tolerance. When plants are exposed to drought stress, cell enlargement, cell wall and synthesis enzymes are reduced and growth and plant height are decreased, consequently.

#### 4.2 Root length (cm)

Mean root length comparison (Table 1) showed that the accessions under non-drought (ND) stress had no significant differences, all the accessions had the similar root length as under ideal condition the soybean roots grow on the top inches of the soil. The result (Table 1) indicated the significant differences when the accessions are subjected to drought stress. Under drought stress (DS) condition, TGx 2006-3F had the longest root length (43.33 cm) and the shortest root length was obtained in the accession TGx 2007-8F (24.6 cm). Due to the effect of drought stress, the root length was increased by 19.4% deeper under drought stress condition compared to non drought stress condition (Table 2). It is evident that increase in Root length suggested a mechanism of drought tolerance in soybean. The drought stress promotes the expansion of the root system to reach additional deeper moisture zones in the soil profile.



Figure 2: Performance of soybean accessions on the root length (cm) under non-drought (ND) and drought stress (DS) condition.

## Dry weight /plot (Biomass) (g)

Table 1 also showed the significant differences (p<0.05) among the accession in non-drought stress (ND) condition which is due to the effect of genotype and the highest dry weight was recorded in TGx 2004–13F (924.67 g) followed by TGx 2007–8F (896.7 g), Local–107 (876.10 g), TGx 2004–10F (855.30 g) and TGx 2008–2F (855.20 g) while the lowest dry weight belongs to TGx 1448–2E (72.30 g) and others are similar. The result presented in (Table 1) also indicated

that the significant differences exist (P<0.05) among the accessions subjected to drought stress (DS) and the highest dry weight was related to TGx 2008–2F (599.50 g) and TGx 2006–3F (541.53 g) while the lowest was recorded in TGx 1448–2E (17.87 g). The drought stress caused up to 48.3% reduction in the dry weight of soybean when subjected to drought stress condition. (Table 2) The drought stress inhibits the dry matter production through its inhibitory effect on leaf

expansion, leaf development and stem enlargement which consequently reduce the dry weight.



Figure 3: Performance of soybean accessions on dry weight under non-drought (ND) stress and drought stress (DS) condition.

Table 3: Means comparison of number of pods per plant, number of aborted pods per plant, number of seeds per plant and seed weight per plant of soybean accessions in non-drought stress (ND) and drought stress (DS) sites.

| Accession    | Means |       |       |      |       |        |         |          |
|--------------|-------|-------|-------|------|-------|--------|---------|----------|
|              | NP/I  | PL    | NAP/  | PL   | NS/P  | Ľ      | SW/P    | Ľ        |
|              | ND    | DS    | ND    | DS   | ND    | DS     | ND      | DS       |
| TGx 1485-1D  | 187a  | 56ab  | 22abc | 7b   | 278a  | 54abc  | 32.67a  | 6.00bc   |
| Local-107    | 130ab | 54ab  | 9bc   | 14ab | 188ab | 29c    | 25.23ab | 4.23c    |
| TGx 2010-3F  | 118ab | 62ab  | 12bc  | 17ab | 169ab | 54abc  | 25.23ab | 6.73bc   |
| TGx 1448-2E  | 137ab | 55ab  | 44a   | 14ab | 155ab | 42bc   | 10.83b  | 4.07c    |
| TGx 2004-10F | 165ab | 42b   | 21bc  | 9b   | 198ab | 34c    | 23.97ab | 4.80c    |
| TGx1987-62F  | 153ab | 52ab  | 7bc   | 8b   | 188ab | 47bc   | 22.30ab | 5.87bc   |
| TGx 2007-11F | 144ab | 117a  | 29abc | 42a  | 193ab | 126ab  | 22.50ab | 16.6ab   |
| TGx 2004-13F | 153ab | 78ab  | 28abc | 18ab | 171ab | 53abc  | 24.13ab | 7.57abc  |
| TGx 2008-12F | 71b   | 68ab  | 9bc   | 12b  | 79b   | 63abc  | 13.47ab | 9.50abc  |
| TGx 2007-8F  | 100ab | 90ab  | 25abc | 24ab | 107b  | 51bc   | 15.57ab | 8.40abc  |
| TGx 2008-4F  | 124ab | 119a  | 19bc  | 15ab | 150ab | 131ab  | 19.83ab | 16.30ab  |
| TGx 2006-3F  | 124ab | 76ab  | 32ab  | 6b   | 81b   | 66abc  | 12.47b  | 11.80abc |
| TGx 2008-2F  | 117ab | 60ab  | 15bc  | 10b  | 152ab | 56abc  | 19.70ab | 8.90abc  |
| TGx 2011-3F  | 119ab | 67ab  | 8bc   | 11b  | 181ab | 62abc  | 21.63ab | 7.43abc  |
| TGx 2011-7F  | 85b   | 73ab  | 5c    | 33ab | 138ab | 107abc | 16.93ab | 13.37abc |
| TGx 2010-15F | 143ab | 102ab | 26abc | 20ab | 199ab | 140a   | 25.47ab | 18.80a   |
| TGx 2004-3F  | 105ab | 48b   | 11bc  | 5b   | 144ab | 54abc  | 17.90ab | 8.03abc  |
| TGx 2010-12F | 84b   | 80ab  | 13bc  | 32ab | 118b  | 103abc | 14.40ab | 13.60abc |

**Keys:** ND = Non-drought stress, DS = Drought stress, NP/PL = Number of pods per plant, NAP/PL = Number of aborted pods per plant, NS/PL = Number of seeds per plant, SW/PL = Seed weight per plant; Similar letters in each column shows non-significant difference according to DMRT (Duncan Multiple Range Test) at 5% level.

| Treatment          | N <u>o </u> of pods | No of seeds/plant | Seed weight/plant |
|--------------------|---------------------|-------------------|-------------------|
| Non drought stress | 126                 | 161               | 20.11             |
| Drought stress     | 71                  | 67                | 9.14              |
| Decrease (%)       | 44%                 | 58.4%             | 55%               |

**Table 4:** Effect of drought stress on number of pods per plant, number of seeds per plant and seed weight per plant of soybean accessions

#### Number of pods/plant

Result of mean comparison (Table 3) showed that both non-drought (ND) stress and drought stress (DS) had significant differences (p<0.05) among the accessions on the number of pods/plant and the result also indicated that the highest number of pod was obtained from TGx 1485 -1D (187 pods) and the lowest was recorded in TGx 2008–12F (71 pods), TGx 2010-12F (84 pods), TGx 2011-7F (85 pods) and the rest are all similar under non-drought (ND) stress condition meanwhile under drought stress (DS) condition, the highest number of pods was obtained for TGx 2008-4F (119 pods) and TGx 2007-11F (117 pods) and the lowest was related to TGx 2004-10F (42 pods) and TGx 2004-3F (48 pods), the rest are all similar. Table 4 showed that the drought stress decreased the number of pods/plant by 44%. The number of pods is reduced especially during flowering and pod filling stage as a result of flower abortion, embryo abortion and reduced nodes due to drought stress.

## significant differences among the accessions in the number of aborted pods/plant and the highest number of aborted pods was recorded in the accession TGx 1448-2E (44 pods) and the lowest was obtained in the accession TGx 2011-7F (5 pods) under non-drought stress (ND) condition meanwhile under drought stress (DS), the highest number of aborted pod was recorded in the accession TGx 2007-11F (42 pods) and the lowest was recorded in the accessions TGx 2004-3F (5 pods). The result showed that the higher number of aborted pods recorded in some accessions under drought stress condition could be related to the effect of drought stress occurring during early pod filling stage which leads to abortion of immature pods. However, the numbers of aborted pods in most of the accessions are higher in the non drought stress condition compare to the drought stress condition which could be attributed to the impact of the insect pest damage in the non drought stress condition as large number of insect pests was observed under the non drought stress condition.

#### Number of aborted pods/plant

The results in (Table 3) indicated that both non-drought stress (ND) and drought stress (DS) had



Figure 5: Performance of soybean accessions on the number of aborted pods/plant under non-drought (ND) stress and drought stress (DS) conditions.

#### Number of seeds/plant

The values obtained for yield component (Number of seeds/plant (Table 3) showed that nondrought stress (ND) had a significant differences at (p<0.05) among the accession on the number of seed/plant due to the effect of genotype and the highest number of seed/plant was recorded in TGx 1485–1D (278 seeds) while the lowest number of seeds was obtained in TGx 2008–12F (79 seeds), TGx 2006–3F (81 seeds), TGx 2007–8F (107 seeds) and TGx 2010–12F (118 seeds). Under drought stress (DS) condition, a significant difference at (p<0.05) among the accession was also shown due to the effect of drought stress on the accessions. The highest number of seeds was obtained in TGx 2010–15F (140 seeds) and the lowest was related to Local–107 (29 seeds) and TGx 2004–10F (34 seeds). Table 4 indicated that the number of seeds/plant was drastically reduced by 58.4% which might be attributed to the adverse effect of drought stress on the eighteen (18) accessions. The drought stress occurring during flowering and early pod development shorten the period of pod filling hence significantly reduced the number of seeds.



Figure 6: Performance of soybean accessions on number of seeds/plant under non-drought (ND) and drought stress (DS) conditions.

## Seed weight/plant

The mean comparison (Table 3) on seed weight/plant showed that both non-drought stress (ND) and drought stress (DS) condition had the significant differences in the seed weight/plant among the accessions due to the effect of genotype and drought stress respectively. Under non-drought (ND) stress the highest seed weight was obtained in TGx 1485-1D (32.67 g) and the lowest seed weight was recorded in TGx 1448-2E (10.83 g) and TGx 2006-3F (12.47 g) while when the accessions are subjected to drought stress (DS) condition the highest seed weight was recorded in TGx 2010 – 15F (18.80 g) and the lowest seed weight was related to TGx 1448-2E (4.07 g) followed by TGx 2004-10F (4.8 g) and Local-107 (4.23 g). Interestingly, seed weight/plant followed the same trend as in the number of seeds/plant in that drought stress caused 55% reduction in the seed weight at harvest (Table 4). The stressed soybean

often mature earlier which shorten the grain filling period causing reduced seed weight and yield.



Figure 7: Performance of soybean accessions on seed weight/plant under non-drought (ND) and drought stress (DS) condition

 

 Table 5: Means comparison of yield per plot, 100-seed weight and harvest index (HI) of soybean accessions in nondrought (ND) stress and drought stress (DS) sites

|                             | Means                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Y/P (g/plot) m <sup>2</sup> |                                                                                                                                                                                                                                                 | 100-SW (g)                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | HI (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ND                          | DS                                                                                                                                                                                                                                              | ND                                                                                                                                                                                                                                                                                                                        | DS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 279.57ab                    | 44.17abc                                                                                                                                                                                                                                        | 14.77ab                                                                                                                                                                                                                                                                                                                   | 10.37bcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.37a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.13a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 354.33a                     | 34.20bc                                                                                                                                                                                                                                         | 16.93a                                                                                                                                                                                                                                                                                                                    | 10.10cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.57abc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.20a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 230.03ab                    | 36.30bc                                                                                                                                                                                                                                         | 15.57a                                                                                                                                                                                                                                                                                                                    | 10.53bcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39.40abc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16.80a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 23.17c                      | 3.80c                                                                                                                                                                                                                                           | 7.70c                                                                                                                                                                                                                                                                                                                     | 7.27d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.83abcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22.17a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 203.67abc                   | 70.13abc                                                                                                                                                                                                                                        | 12.60ab                                                                                                                                                                                                                                                                                                                   | 10.03cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23.57d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21.00a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 189.20abc                   | 52.60abc                                                                                                                                                                                                                                        | 10.83bc                                                                                                                                                                                                                                                                                                                   | 7.30d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.00abcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 25.30a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 164.60abc                   | 87.07abc                                                                                                                                                                                                                                        | 13.63ab                                                                                                                                                                                                                                                                                                                   | 10.53bcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.50abcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.43a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 206.50abc                   | 61.20abc                                                                                                                                                                                                                                        | 14.97ab                                                                                                                                                                                                                                                                                                                   | 10.20bcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.30cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 25.10a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 168.03abc                   | 101.44abc                                                                                                                                                                                                                                       | 15.30ab                                                                                                                                                                                                                                                                                                                   | 14.23ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 34.33abcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 26.27a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 258.33ab                    | 104.10abc                                                                                                                                                                                                                                       | 15.37ab                                                                                                                                                                                                                                                                                                                   | 13.20cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.53bcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27.63a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 170.43abc                   | 108.33ab                                                                                                                                                                                                                                        | 15.17ab                                                                                                                                                                                                                                                                                                                   | 13.17cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 31.27abcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 28.87a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 193.17abc                   | 141.33a                                                                                                                                                                                                                                         | 16.88a                                                                                                                                                                                                                                                                                                                    | 15.61a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.08bcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26.77a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 272.50ab                    | 132.13ab                                                                                                                                                                                                                                        | 14.73ab                                                                                                                                                                                                                                                                                                                   | 12.30abc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.833abcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 24.47a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 216.4abc                    | 86.17abc                                                                                                                                                                                                                                        | 12.90ab                                                                                                                                                                                                                                                                                                                   | 10.37bcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33.83abcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.50a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 161.0abc                    | 79.30abc                                                                                                                                                                                                                                        | 13.70ab                                                                                                                                                                                                                                                                                                                   | 11.37bcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 41.83ab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 28.20a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 138.83bc                    | 112.27ab                                                                                                                                                                                                                                        | 13.60ab                                                                                                                                                                                                                                                                                                                   | 13.40abc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.67cd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 23.67a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 181.97abc                   | 97.40abc                                                                                                                                                                                                                                        | 13.67ab                                                                                                                                                                                                                                                                                                                   | 12.40abc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.40abcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.00a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 125.90bc                    | 80.13abc                                                                                                                                                                                                                                        | 12.93ab                                                                                                                                                                                                                                                                                                                   | 12.60abc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.97abcd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.43a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                             | Y/P (g/plot)<br>ND<br>279.57ab<br>354.33a<br>230.03ab<br>23.17c<br>203.67abc<br>189.20abc<br>164.60abc<br>206.50abc<br>168.03abc<br>258.33ab<br>170.43abc<br>193.17abc<br>272.50ab<br>216.4abc<br>161.0abc<br>138.83bc<br>181.97abc<br>125.90bc | MeansY/P (g/plot) m²NDDS279.57ab44.17abc354.33a34.20bc230.03ab36.30bc23.17c3.80c203.67abc70.13abc189.20abc52.60abc164.60abc87.07abc206.50abc61.20abc168.03abc101.44abc258.33ab104.10abc170.43abc108.33ab193.17abc141.33a272.50ab132.13ab216.4abc86.17abc161.0abc79.30abc138.83bc112.27ab181.97abc97.40abc125.90bc80.13abc | Means           Y/P (g/plot) m²         100-s           ND         DS         ND           354.33a         34.20bc         16.93a           230.03ab         36.30bc         15.57a           23.17c         3.80c         7.70c           203.67abc         70.13abc         12.60ab           189.20abc         52.60abc         10.83bc           164.60abc         87.07abc         13.63ab           206.50abc         61.20abc         14.97ab           168.03abc         101.44abc         15.30ab           258.33ab         104.10abc         15.37ab           170.43abc         108.33ab         15.17ab           193.17abc         141.33a         16.88a           272.50ab         132.13ab         14.73ab           216.4abc         86.17abc         12.90ab           161.0abc         79.30abc         13.60ab           138.83bc         112.27ab         13.60ab           181.97abc         97.40abc         13.67ab           125.90bc         80.13abc         12.93ab | Means           Y/P (g/plot) m <sup>2</sup> 100-SW (g)           ND         DS         ND         DS           279.57ab         44.17abc         14.77ab         10.37bcd           354.33a         34.20bc         16.93a         10.10cd           230.03ab         36.30bc         15.57a         10.53bcd           23.17c         3.80c         7.70c         7.27d           203.67abc         70.13abc         12.60ab         10.03cd           189.20abc         52.60abc         10.83bc         7.30d           164.60abc         87.07abc         13.63ab         10.53bcd           206.50abc         61.20abc         14.97ab         10.20bcd           168.03abc         101.44abc         15.30ab         14.23ab           258.33ab         104.10abc         15.37ab         13.20cd           170.43abc         108.33ab         15.17ab         13.17cd           193.17abc         141.33a         16.88a         15.61a           272.50ab         132.13ab         14.73ab         12.30abc           216.4abc         86.17abc         12.90ab         10.37bcd           138.83bc         112.27ab         13.60ab         13.40abc< | Means           V/P (g/plot) m <sup>2</sup> 100-SW (g)         HI (*           ND         DS         ND         DS         ND           279.57ab         44.17abc         14.77ab         10.37bcd         44.37a           354.33a         34.20bc         16.93a         10.10cd         40.57abc           230.03ab         36.30bc         15.57a         10.53bcd         39.40abc           23.17c         3.80c         7.70c         7.27d         31.83abcd           203.67abc         70.13abc         12.60ab         10.03cd         23.57d           189.20abc         52.60abc         10.83bc         7.30d         31.00abcd           164.60abc         87.07abc         13.63ab         10.53bcd         33.50abcd           206.50abc         61.20abc         14.97ab         10.20bcd         26.30cd           168.03abc         101.44abc         15.37ab         13.20cd         29.53bcd           170.43abc         108.33ab         15.17ab         13.17cd         31.27abcd           193.17abc         141.33a         16.88a         15.61a         29.08bcd           272.50ab         132.13ab         14.73ab         12.30abc         31.833abcd <t< td=""></t<> |

**Keys:** ND = Non drought stress, DS = Drought stress, Y/P =Yield per plot (g/plot), 100–SW; 100 seed weight, (g) and HI = Harvest Index (%); Similar letters in each column shows non-significant difference according to DMRT (Duncan's multiple Range Test) at 5% level.

| Treatment          | Yield per plot(g/plot) | 100 – seed weight (g) | Harvest Index (%) |
|--------------------|------------------------|-----------------------|-------------------|
| Non drought stress | 196.5                  | 13.8                  | 33.2              |
| Drought stress     | 77.96                  | 11.4                  | 25.1              |
| Decrease (%)       | 60.3 %                 | 17.4%                 | 24.4%             |

Table 6: Effect of drought stress on yield per plot, harvest index and 100-seed weight of soybean accessions

## Yield/plot (g)

The result for grain yield (Table 5) indicated that the non-drought stress (ND) condition had significant differences (P<0.05) among the accessions due to the effect of genotype. The highest grain yield was obtained in Local–107 (354.33 g) and the lowest grain yield was related to TGx 1448–2E (23.17 g). The significant differences also existed among the accessions under drought stress (DS) due to the effect of drought stress which reduced the grain yield by

60.3% (Table 6) and the highest grain yield was recorded in TGx 2006–3F (141.33 g) and the lowest grain yield was related to TGx 1448–2E (3.80 g). Drought stress at the reproductive stage reduced the crop yield by decreasing the seed yield and yield components. The reduction could be attributed to the accelerated days to flowering, shorter grain filling duration and lower accumulation of dry matter



**Figure 8:** Performance of soybean accessions on the yield/plot under non-drought (ND) and drought stress (DS) condition.

## 100-seed weight (g)

The mean comparison on the 100-seed weight (Table 5) showed that non-drought (ND) stress condition had significant differences among the accessions due to the effect of genotype and the highest 100-seed weight was obtained in the accessions Local-107 (16.93 g) followed by TGx 2006–3F (16.88 g) and TGx 2010–3F (15.57 g) and the lowest 100– seed weight was recorded in the accession TGx 1448–2E (7.70 g) and the rest are similar. The drought stress (DS) condition also showed significant differences (P<0.05) among the accessions as the effect of drought stress reduced the 100–seed

weight by 17.4% (Table 6). The highest 100-seed weight was obtained for accession TGx 2006-3F (15.61 g) and the lowest 100-seed weight was obtained for accession TGx 1448-2E (7.27 g) and TGx

1987– 62F (7.30 g). The grain filling period is shorten by the drought stress which may results in to formation of smaller, shrinkage seeds with a lower seed weight.



Figure 9: Performance of soybean accessions on 100–seed weight under non-drought (ND) and drought stress (DS) condition.

#### Harvest index (HI %)

$$HI = \frac{seed \ yields \ (Grain \ yield)(g)}{Biomass \ (biological \ yield)(g)} \times 100. \ (Yagoub \ et al., 2015)....Equation 1$$

The result of harvest index (HI %) (Table 5) revealed that the non-drought (ND) stress had the significant differences (P<0.05) among the accession due to the genotype effect and the highest harvest index (HI) was obtained in the accession TGx 1485–1D (44.3%) while the lowest harvest index (HI) was recorded for accession TGx 2004–10F (23.57%) and when the accessions are subjected to drought stress, the harvest index (HI) was slightly reduced by 24.4% (Table 6) and the results showed no significant differences among the accessions due to the effect of drought stress. It can be deduced from this work that harvest index (HI)

decreases proportionally or as the result of reduction in the yield and the biomass (dry weight) due to the effect of drought stress on the general development of the crop.



Figure 10: Performance of soybean accessions on harvest index (HI) under non-drought (ND) and drought stress (DS) conditions.

## The Drought intensity index (DII)

**Table 7:** Drought intensity index (DII) to qualify soybean accessions response to drought stress tolerance, any accession with the value of drought intensity index (DII) exceeding 0.7 shows severity of the drought stress.

| Accessions   | Source         | Drought Intensity Index (DII) |
|--------------|----------------|-------------------------------|
| TGx 1485-1D  | IITA           | 0.81                          |
| Local-107    | South Sudan ** | 0.90                          |
| TGx 2010-3F  | IITA           | 0.72                          |
| TGx 1448-2E  | IITA           | 0.82                          |
| TGx 2004-10F | IITA           | 0.65                          |
| TGx 1987-62F | IITA           | 0.72                          |
| TGx 2007-11F | IITA           | 0.47                          |
| TGx 2004-13F | IITA           | 0.70                          |
| TGx 2008-12F | IITA           | 0.39                          |
| TGx 2007-8F  | IITA           | 0.59                          |
| TGx 2008-4F  | IITA           | 0.36                          |
| TGx 2006-3F  | IITA           | 0.26                          |
| TGx 2008-2F  | IITA           | 0.51                          |
| TGx 2011-3F  | IITA           | 0.60                          |
| TGx 2011-7F  | IITA           | 0.50                          |
| TGx 2010-15F | IITA           | 0.19                          |
| TGx 2004-3F  | IITA           | 0.46                          |
| TGx 2010-12F | IITA           | 0.36                          |

\*\* The variety Local 107 (accession) was courteously provided by a farmer from Hai 107 (Not a released variety). DII; (Drought Intensity Index)

Drought intensity index (DII) was used to qualify the genotypes or accession to drought stress tolerance and it is calculated from the formula;

$$(DII = 1 - \frac{Xd}{Xp})$$

Where, **DII** = Drought Intensity Index,  $X_d$  = Mean yield average across line under stress,  $X_p$  = Mean yield average across line under non- stress condition.

Drought indices which provide a measure of drought tolerance or susceptibility based on loss of yield under drought stress in comparison to nondrought stress have been used for screening drought tolerant genotypes.

The result for DII (Table 8) showed that accession TGx-2010-15F had, in an ascending order the lowest DII value followed by TGx-2006-3F, TGx-2008-4F, TGx-2010-12F, TGx-2004-3F, TGx-2007-11F, TGx-2011-7F, TGx-2008-12F (DII) TGx 2004-10F, TGx 2007-8F, TGx 2008-2F and TGx 2011-3F which exhibited low drought intensity index (DII) and

the severe drought intensity was recorded in accessions TGx 1485–1D, Local–107, TGx 2010–3F and TGx 1987–62F because their yields were adversely affected by drought stress as a result of their higher drought intensity index (DII).

#### Ranking soybean genotypes (accessions)

To determine the most desirable drought tolerant accessions, all soybean accessions were ranked according to Chowdhury *et al.* (2016) on the basis of their yield reduction due to water stress over non-stress (Table 8). According to the yield reduction, accession were ranked into four groups as tolerant (less than 50% yield reduction), moderately tolerant (50.01-60.00% yield reduction), moderately susceptible (60.01-70.00% yield reduction) and susceptible (above 70.01% yield reduction).

| Rank order             | Yield reduction (%) over non- | Accessions (18)       |
|------------------------|-------------------------------|-----------------------|
|                        | drought stress                |                       |
|                        |                               | TGx 2010–15F (19%)    |
|                        |                               | TGx 2006–3F (26.8%)   |
|                        |                               | TGx 2008–4F (36.4%)   |
| Tolerant               | Less than 50.00               | TGx 2010–12F (36.4%)  |
|                        |                               | TGx 2008–12F (39.6%)  |
|                        |                               | TGx 2004–3F (46.5%)   |
|                        |                               | TGx 2007–11F (47.1%)  |
|                        |                               | TGx 2011–7F (50.70%)  |
| Moderately tolerant    | 50.01 – 60.00                 | TGx 2008–2F (52.00%)  |
|                        |                               | TGx 2007–8F (59.70%)  |
|                        |                               | TGx 2011–3F (60.20%)  |
| Moderately susceptible | 60.01 – 70.00                 | TGx 2004–10F (65.60%) |
|                        |                               | TGx 2004–13F (70.40%) |
|                        |                               | TGx 1987–62F (72.20%) |
|                        |                               | TGx 1448–2E (83.60%)  |
| Susceptible            | Above 70.01                   | TGx 2010–3F (84.20%)  |
|                        |                               | TGx 1485–1D (84.20%)  |
|                        |                               | Local–107 (90.35%)    |

Table 8: Ranking of 18 soybean accessions on the basis of their yield reduction under drought stress (DS) condition

Based on the yield reduction, seven accessions were found in tolerant group because they were relatively more productive both under non-stress and water stress conditions, and exhibited low yield reduction due to water stress. Similarly, three accessions were found moderately tolerant as they gave lower yield than the tolerant accessions, but higher yield than the susceptible accession. Two accessions were grouped as moderately susceptible due to higher yield reduction in water stress condition and six accessions were ranked in susceptible group due to their very low yielding ability and very high yield reduction.

## DISCUSSION

Results of this study indicated that the significant differences (P<0.05) exist among the accessions under non-drought stress (ND) condition (Table 1) at (P<0.005) was only attributed to the effect of genotype whilst the accessions subjected to drought stress (DS), the accessions also showed significant differences (P<0.05) due to its respond to drought stress condition. It was also observed that the drought stress caused reduction in the plant height by 15% as when plants are exposed to drought stress, cell enlargement, cell wall and synthesis enzymes are reduced, the growth and plant height are decreased. This finding is in agreement with the results of Nielsen and Nelson (1998) who reported on depression of plant height as a result of severe influence from environmental factors such as water stress. Desclaux et al. (2000) evaluated the effects of water stress at various stages of development in soybean plants and found that reduction in plant height was associated with water stress induced in the V4 stage. This finding is also in agreement with that of Hiler et al. (1972) who found that plant height in cowpea was substantially reduced by water stress. Moreover, (Nonami,1998) reported that drought stress impaired cell elongation and expansion by reduced turgor pressure which results in a decrease in tissue water contents and loss of turgor. Drought stress also impairs photoassimilation and metabolites required for cell division that result in to reduced plant height, leaf area and crop growth under drought condition. The result of the foregoing study also indicated that due to the effect of drought stress, the root length of soybean is increased by 19.4% (Table 2). It is evident that increase in root length suggests a mechanism of drought tolerance in soybean. The soybean can develop a root system that can reach the deeper layer of the soil for mitigating the effect of water stress as the roots send the signal to the stem such that the dry matter will be accumulated in the root to initiate its grow. Leport et al. (2006) also reported that drought stress improves allocation of assimilates to the root system such that the roots can reach the deeper soil layer to enhance water uptake.

When the water vapor atmospheric demand is greater, this requires the plant to have a well developed root system allowing it to reach water in deeper layers of the soil profile (Souza *et al.*, 2013). This result is also in agreement with (Hoogenboom *et al.*, 1987) who reported that the increase root growth rate coincided with the water deficit.

Despite the wealthy data on root development under drought or water stress, there are some controversial evidences on effect of drought stress on root growth. For instance, an increase in root growth due to water stress was reported in *Catharathus*  *roseus* (Jaleel *et al.*, 2008), the growth rate was not substantially inhibited under water stress in maize (Sacks *et al.*, 1997).

It was also observed that both non-drought stress and drought stress had significant differences among the accessions (Table 1). The results showed that the drought stress resulted to 48.3% reduction in the dry weight (Table 2). This finding is in support of (Sauza et al., 2012) who indicated that, drought stress decreased photosynthetic rates. biomass accumulation, translocation to grain, leaf area and acceleration of the senescence and abscission of leaves could reduce the dry weight by approximately 50% compare to normal plant. These results agree with (Khan et al., 2001) and (Zhao et al., 2006) who reported that a common adverse effect of water stress on crop plant was the reduction in fresh and dry biomass production.

The results also revealed that when soybean crops are subjected to water stress, the number of pods/plant and the number of seeds/plant can be reduced up to 44% and 58.4%, respectively, (Table 4) as a result of flower abscission during flowering stages, immature pod abortion and reduced number of nodes due to the adverse effect of drought stress on the soybean during reproductive stages. This result is in agreement with (Sionit and Kramer, 1977) who indicated that water stress during early pod formation caused greatest reduction in the number of pods and seed at harvest.

Lopez *et al.* (1996) also indicated that the number of pods/plant are most affected by the drought stress during flowering and can reduced the final grain yield up to 70% depending on the stress period.

These results are also in line with (Hall and Twidwell, 2002) who stated that moisture stress during the soybean reproductive stages causes floral abortion, reduced pod number, fewer seeds per pod, and reduced seed size. Moreover, this finding is in support of Faroog *et al.* (2009) who indicated that drought stress can reduce the soybean yield by 46%-71% at reproductive stage.

Based on the results of pod abortion (Table 3), the accessions had significant differences both in the non - drought and drought stress condition in the number of aborted pods. The higher rate of pod abortion under drought stress condition could be related to the effect of drought stress as other accession under drought stress aborted higher number of pods compare to the accessions in non drought condition. Dybing *et al.* (1986) reported that drought stress occurring during flowering and early pod development increased the rate of pod abortion in soybean. In support to this finding (Liu *et al.*, 2004) also indicated that the abscisic acid (ABA) in flowers and pods was increased by drought stress which leads to pod abortion.

Furthermore, drought stress limits the source and also cause barrenness as it impairs the reproductive sink (pod) from utilizing the incoming assimilates from the source that may result in to pod abortion (Farooq *et al.*, 2009).

However, some accessions under non-drought stress condition had higher number of aborted pods compared to drought stress condition which could be attributed to the incident of insect pest damage as a result of higher number of insect pest which was observed in non-drought stress site.

This foregoing study also indicated that when different accessions of soybean are subjected to drought stress, their response to the stress varies which cause the significant differences among the accessions and interaction between genotype and environment in seed weight/plant, grain yield/plot and 100–seed weight. The drought stress also leads to the reduction in seed weight/plant, grain yield/plot and 100–seed weight by 55%, 60.3% and 17.4%, respectively. These findings are in line with El Sabagh *et al.* (2016) who indicated that water stress is a key abiotic limiting factor for soybean production and can reduce the yield of soybean up to 40% or more.

As a result of reduced rate and duration of effective seed filling period (Table 6.), soybeans produced shrinked and smaller seed size with reduced seed weight which leads to decreases sovbean final vield in drought stress conditions. These results are in agreement with the previous studies (Gupta, 1995 and Hsiao 1973) that drought stress at reproductive growth stages disrupted photosynthesis and remobilization in plants which can cause reduction in the number and weight of seeds. In support of these results, Dogan et al. (2007) also stated that drought stress is important factor in growth and yield reduction especially when drought stress occurs at reproductive stages such as initial pod filling, beginning of seed formation and full seed stages is responsible for yield reduction compared to non drought stress conditions.

Furthermore, based on the results presented in (Table 5) the non-drought stress (ND) had significant differences (P<0.05) among the accessions in the harvest index (HI) due to the effect of genotype meanwhile drought stress (DS) showed no significant differences among the accessions but as the result of adverse drought stress, the harvest index (HI) was reduced by 24.4% (Table 6). It seems that, the (HI) was reduced due to the loss of flowers and decrease in seed numbers per plant. The finding of this study is in line with (Mirakhori *et al.*, 2009) who indicated that the harvest index decreases as the result of reduction in yield and biomass yet there are no

significant differences in drought stress conditions. Similarly, Abbas *et al.* (2013) also stated that the loss of harvest index (HI) at grain filling stage was due to reduced assimilates transfer, eventually leads to shrinkage and seed weight is reduced as a result of reducing the harvest index (HI).

Nevertheless, the results presented in (Table 7 and Table 8) showed clearly that when different genotype of soybean are subjected to drought stress, their respond to drought stress varies from one genotype to another as other accession exhibit drought tolerant and others susceptible to drought stress based on their performance in both non drought and drought stress condition. Generally, drought stress affects soybean in all the development stages especially during the reproductive stage which adversely reduced crop yield by decreasing seed yield and yield components. The reduction in crop yield could be attributed to the accelerated days to flowering, shorter grain filling duration and lower accumulation of dry matter, reduction in yield components such as; seed weight, number of seeds/plant and number of pods/plant. Therefore the great reduction in the yield can be minimized by growing the soybean genotypes that are classified as drought tolerance and improving the yield component under drought stress condition.

## CONCLUSIONS

Drought stress has a great impact on the development of soybean and consequently on final seed yield. However the present study identified some suitable genotypes of soybean to be improved and develop to minimize the adverse soybean yield loss due to the drought stress. Based on the finding, it can be concluded that drought stress affect all the morphological and reproductive parameters and the significant differences exist among the soybean accessions under both non- drought stress (ND) and drought stress (DS) conditions except, root length under non drought stress and the harvest index under drought stress condition. Drought stress also decreased the plant height and dry weight by 15% and 48.3% respectively and increased the root length by 19.4% (Table 2) and also adversely reduced the reproductive parameters such as number of pods/plant (44%), number of seeds/plant (58.4%), seed weight/plant (55%), grain yield/plant (60.3%), 100-seed weight (17.4%) and harvest index (24.4%). The most affected parameter by drought stress was the yield/plot by 60.3% reduction (Table 4 and 6), this indicated clearly that the effect of drought stress on the final yield was due to decreased number of pod/plant, seed number per plant, seed number per pod and decreased seed individual weight. Although drought

stress had great impact on the final seed yield reduction, some accessions such as TGx 2010–15F, TGx 2006–3F, TGx 2008–4F, TGx 2010–12F, TGx 2008–12F, TGx 2004–3F, TGx 2007–11F were less affected by drought stress as they showed high yield under both non drought stress and drought stress condition hence exhibit tolerant to drought stress. This clearly indicated that the respond of different accessions to drought stress varies from one accession to another.

## RECOMMENDATIONS

Based on the findings, it can be suggested that the accessions such as TGx 2004–13F, TGx 1987– 62F, TGx 1448–2E, TGx 2010–3F, TGx 1485–1D, Local–107 that are susceptible to drought stress and TGx 2011–3F, TGx 2004–10F were moderately susceptible and both should not be grown in drought prone agro-ecological zone or during off-season to avoid yield loss due to drought stress but they can be grown during the first season or under irrigation since they exhibit higher yield under normal condition except the accession TGx 1448 – 2E that had the lowest yield though under normal condition.

Similarly, it can be recommended that the accessions; TGx 2010–15F, TGx 2006–3F, TGx 2008–4F, TGx 2010–12F, TGx 2008–4F, TGx 2007–11F, that were identified as drought tolerant and TGx 2011–7F, TGx 2008–2F and TGx 2007–8F were moderately tolerant and both should be subjected to further field trial before they are released as drought tolerant varieties for further commercial production. We also recommended that more research need to be done to determine the most affected growth stage by drought stress that may contribute to the failure to obtain maximum soybean yield such that the frequency of irrigation or planting date can be adjusted to minimize the yield loss due to drought stress.

Finally, despite the effort to screen the soybean accessions concentrating more on the reproductive component, further research on the morphological and physiological parameters such as photosynthetic apparatuses (PAR, stomatal conductance, transpiration), number of leaves/plant, leave area index, (LAI), days to flowering, days to maturity, stem biomass reduction and identifying morphological markers is essential to understand the mechanism underlying drought tolerance and suggest more accessions from other regions or agro-ecological zones.

## ACKNOWLEDGEMENTS

We are thankful to the IITA (International Institute of Tropical Agriculture) for providing us with

the soybean seeds. We are also thankful to our colleagues especially our senior technical officer (Late Mr. Anthony Crane), Department of Agricultural Sciences (University of Juba) for the initial experimental setup.

## REFERENCES

- Abbas MA, Naderi R, Naseri A, Fathi SB and Maleki R (2013). Physiological performance of soybean cultivars under drought Stress. *Life Science*, 2(6): 38–44.
- Anjum SA, Xie X-Y, Wang L-C, Saleem MF, Man C, Lei W (2011). Morphological, Physiological and biochemical responses of plant to drought stress. *African Journal of Agricultural Research*, 6(9): 2026–2032.
- Bhatia VS, Jumrani KC, Pandey GP (2013). Developing drought tolerance in soybean using physiological approaches. *School of Life Science, Soybean Research,* 12(1): 1–19.
- Blum A (2009). Effective use of water (EUW) and not water use efficiency (WUE) is the target of crop yield improvement under drought stress. *Field Crop Research*, 112: 119–123.
- Boyer JS (1982). Plant productivity and environment. *Science*, 218: 443–448.
- Bray EA (2001). Plant response to water deficit stress, University of California, USA. Pp 1-2.
- Burton GW (1964). The geneticist's role in improving water use efficiency by crops. American Society of Agronomy, Madison, Wisconsin, Pp 317 – 346.
- Carsky RJ, Berner DK, Oyewwole BD, Dashiell K, Schulz S (2000). Reduction of *Striga hermontica* parasitism on maize using Soybean rotation. *International Journal of Pest Management,* 46(2): 115–120.
- Chopra VL, Paroda RS (1986). Approaches for incorporating drought and salinity resistance in crop plants (eds, Oxford and IBH, New Delhi, Pp, 56 – 86.
- Chowdhury JA, Karim MA, Khaliq QA, Solaiman ARM, Ahmed JU (2016) Screening of soybean (*Glycine max* L.) genotypes under water stress condition, *Bangladesh Journal of Agricultural Research.* 41(3): 441 – 450.
- Desclaux D, Huynh T, Roumet P (2000). Identification of soybean plant characteristics that indicate the timing of drought stress. *Crop Science*, 40:716 – 722.
- Dogan E, Kirnak H, Copur O (2007). Deficit irrigation during soybean reproduction stages and crop growth–soybean simulations under semi–arid climatic condition. *Field Crops Research*, 103: 154–159.

- Dybing CD, Ghiasi H, Paech C (1986) Biochemical characterization of soybean ovary growth from anthesis to abscission of aborting ovaries. *Plant physiology*, 81:1069–1074.
- El Sabagh A, Sorour S, and Moris A (2016), Role of osmoprotectants and compost application in improving water stress tolerance in soybean (*Glycine max* L.). *International Journal of Current Research*, 8(2): 25949–25954.
- Fabiyi EF (2006). Soybean processing, utilization and health benefits. *Pakistan Journal of nutrition*, 5:453 457.
- Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009). Plant drought stress: effects, mechanisms and management. *Agronomy for Sustainable Development*, 29: 185–212.
- Frankline, W.M. (1998). Soybean, Why grow soybean? Echo Technical Note. Pp, 03 – 04.
- Global Development Program (2011). Agricultural development strategic over view. Bill and Melinda and Gates Foundation. (<u>http://www.gatefoundation.org/agricultural)dev</u> elopment/documentsagricultural developmentstrategy-overview.pdf).
- Gomez KA, Gomez A (1984). Statistical procedure for agricultural research 2<sup>nd</sup> edition. A Wiley, inter Science publication, John Wiley and Sons, New York, USA.
- Grace J, Ford ED, Jarvis PJ (1981). Plants and their atmospheric environment, Black Well Scientific Publication, Oxford London, Edinburgh, Boston Melbourne, Pp. 251-252.
- Hiler EA, Van Bavel CHM, Hossain MM, Jordan WR (1972). Sensitivity of Southern peas to water deficits at three growth stages. *Agronomy Journal*, 64: 60-64.
- Hoogenboom G, Huck MG, Peterson CM (1987). Root growth rate of soybean as affected by drought stress. *Agronomy Journal* 79: 607–614.
- Hymonwitz T, Shurtleff WR (2005). Debunking soybean myths and legends in the historical and popular literature. *Crop Science*, 45: 473– 476.
- Ibrahim SE (2012). Agronomic studies on irrigated soybean in Central Sudan., Effect of plant spacing on grain yield and yield components. *International Journal of Agriculural Sciences*, 2(8): 733–739.
- Jaleel CA, Gopi R, Sankar B, Gomathinayagam M, Panneerselvam R (2008). Differential responses in water use efficiency in two varieties of *Catharanthus roseus* under drought stress. *Comptes Rendus Biologies*, 331: 42-47.
- Khan MB, Hussain N, Iqbal M (2001). Effect of water stress on growth and yield components of

maize variety YHS 202. *Journal of Research.* (Science), 12: 15-18.

- Laura ES, Wrather A, Wrights S (2008). Integrated pest management, Soybean diseases, Plant protection programs. College of Agriculture, Food and Natural resources, University of Missouri extension IPM 1002, 2008.
- Leport L, Turner NC, French RJ, Barr MD, Duda R, Davies SL (2006). Physiological responses of chickpea genotypes to terminal drought in a Mediterranean-type environment. *European Journal of Agronomy*, 11: 279–291.
- Liu F, Jensen CR, Andersen MN (2004). Pod set related to photosynthetic rate and exogenous ABA in soybean subjected to different water regimes and exogenous ABA and BA at early reproductive stages. *Annual Botany*, 94: 405– 411.
- Lopez FB, Johansen C, Chauhan YS (1996). Effect of timing of drought stress on phenology, yield and yield component of a short duration pigeon pea. *Journal of Agronomy Crop Science*, 177: 311–320.
- Malik MFA, Qureshi AS, Ashraf M, Ghafoor A (2006). Genetic variability of the main yield related characters in Soybean. *International Journal of Agriculture and Biology*, 8(6): 815–819.
- Mirakhori M, Paknejad F, Moradi F, Ardakani M, Zahedi H, Nazeri P (2009). Effect of Drought stress and methanol on yield and yield components on soybean. *American Journal of Biotechnology*, 5 (4): 162–169.
- Mitra J (2011). Genetics and Genetic improvement of drought resistance in crop plant. *Current Science*, 80(6): 758–763.
- Ngalamu T, Ashraf M, Meseka S (2013), Soybean [*Glycine Max* (L) Merrill] Genotype and environmental interaction effect on yield and other related trait. *American Journal of Experimental Agriculture*, 3(4): 1977–987.
- Nielsen DC, Nelson NO (1998). Black bean sensitivity to water stress at various growth stage. *Crop Science*, 38: 422-427.
- Nonami H (1998). Plant water relation and control of cell elongation at low water potentials. *Journal of Plant Research*, 111: 373 382.
- Passioura JB (1977). Grain yield, harvest index and water use of wheat. *Journal of the Australian Institute of Agricultural Science*, 43:117-120.
- Quisenberry J, McMichael B. (1991). Genetic variation among cotton germplasm for water use– efficiency. *Environmental and experimental Botany*, 31(4): 453-460.
- Raheja, P.C. (1966). Aridity and Salinity. In: Salinity and aridity new approaches to old problems Boyko H. (ed). Pp 10–42.

- Sacks MM, Silk WK, Burman P (1997). Effect of water stress on cortical cell division rates within the apical meristem of primary roots of maize. *Plant Physiology*, 114: 519-527.
- Sinclair TR (2011). Challenges in breeding for yield increase for drought trends. *Plant Science*, 16: 289 293.
- Sinclair TR, Vadez V (2012). The future of grain legumes in cropping system. *Crop Pasture,* 63: 501–512.
- Singh G, Shivakumar BG (2010).The role of soybean in agriculture. In: The soybean botany, production and uses. Singh B (ed) CAB International, Oxford Shire, UK, Pp 24–47.
- Sionit N, Kramer PJ (1977). Effect of water stress during different stages of growth of soybean. *Agronomy Journal*, 69: 274 – 278.
- Souza GM, Catuchi TA, Bertolli SC, Soratto RP (2012). Soybean under water deficit: Physiological and yield responses. In: A comprehensive survey of international soybean research, genetic, physiology, agronomy and nitrogen relationship. Board JE (ed), Intech, Croatia, chapter 13, Pp 273–277.
- Turner NC, Wright GC, Siddique KHM (2001). Adaptation of grain legume (pulses) to water limited environments. *Advances in Agronomy*, 71:193-223.
- Verbree DA (2012). Physiology and genetics of drought tolerance in cowpea and winter wheat, PhD Thesis, Texas A&M University, USA.

- Wanderi SW (2012). Genetic analysis for resistance to soybean rust and yield stability among soybean genotype in Kenya. PhD in Plant Breeding, University of Nairobi, Kenya.
- Yagoub SO, Salam KA, Hassan, MM, Hassan MA (2015). Effect of organic and mineral fertilizers on growth and yield of soybean (*Glycine max* (L) Merrill). *International Journal of Agronomy and Agricultural Research*, 7(1): 45-52.
- Yee-Shan Ku, Wan-Kin Au-Yeung, Yuk-Lin Yung, Man-Wah LT, Chao-Qing Wen, Xueyi Liu, Hon-Ming Lam (2012). Drought stress and tolerance in soybean. In: A Comprehensive survey of international soybean research, genetics, physiology, agronomy and nitrogen relationship. Board, J.E. (ed), Intech, Croatia, Chapter 10, Pp 214 – 215.
- Zhao TJ, Sun S, Liu Y, Liu JM, Liu Q, Yan YB, Zhou HM (2006). Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and transitive DRE binding factors in *Brassica napus. Journal* of *Biological Chemistry*, 281: 10752-10759.