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Abstract: In order to lower production costs and create lightweight components, manufacturers are increasingly focusing 
on the combining of different materials. Welding with tungsten inert gas (TIG) is the chosen method for achieving a 
defect-free, reliable joint with a notably pleasing appearance. However, it's important to note that when dealing with 
materials that possess distinct chemical, physical, and thermal properties, special care is required to ensure the resulting 
joint is robust and rigid. This study delves into an investigation and modelling of TIG welding parameters concerning the 
size of pores and its impact on weld quality. The Response Surface Methodology (RSM) model has produced a numerical 
optimal solution consisting of a current of 200.72A, voltage of 20V, wire diameter of 2.40mm, and wire feed speed of 
20m/s, which will yield a weld pore size of 0.195185. This solution was deemed optimal, boasting a desirability value of 
93.9%, based on the design expert's evaluation. In parallel, an Artificial Neural Network (ANN) was employed in this 
study. For training purposes, 70% of the data was utilized, with 15% allocated for validation and the remaining 15% for 
the actual testing. The results have culminated in the creation of a regression plot, demonstrating the correlation between 
the input variables and the target variable, which yielded R2 values of 0.82928. Upon a comprehensive evaluation of the 
results, the Artificial Neural Network emerged as the superior predictive model compared to the Response Surface 
Methodology because the ANN output fits closer to the experimental than that of RSM. Thus, the approaches effectively 
optimized and predicted the weld pore size. 
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TITLE PAGE 
1. INTRODUCTION 
 
          When the right pressure, temperature, and 
metallurgical conditions are chosen during the welding 
process, two materials are permanently linked together 
through localized cohesion [1]. For combining copper-
gold in the jewelry industry, welding has been used for a 
very long time [2]. Welding had already begun to develop 
quickly by the time electricity was widely available in the 
19th century, and it was being used to combine metals. 
The terms "welding" and "brazing" are interchangeable 
when referring to the joining of autogenous metals [3]. 

Since the properties of the molten material related to fluid 
flow play a significant role in the process, the majority of 
researchers in the field explored the keyhole collapse 
events from a hydrodynamic point of view. Shifting the 
nozzle farther from the welding zone will, however, 
remove the fusion zone protection that shielding gases 
typically offer [4].  The authors suggested the ideal nozzle 
location, which is seen in Figures 1A–1C, where the gas 
widens the keyhole and makes it simpler for gases to 
escape from the welding pool during translation.  
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                Figure 1A, 1B: Pore occurring after weld [5],             Figure 1C: Weld explode after TIG welding [6] 
 
 
           
          Using mechanical cleaning techniques such as 
scraping or employing a steel brush comes with a 
significant drawback: these methods inflict substantial 
damage to the parent material's surface, resulting in 
visible grooves and scratches. These surface 
imperfections have the potential to adversely affect the 
final appearance of the weld bead [7]. Furthermore, these 
techniques are challenging to control and heavily reliant 
on the operator's judgment for assessing cleanliness and 
ensuring repeatability. To overcome these limitations, 
numerical modelling has emerged as a highly effective 
tool for comprehending complex engineering issues [8]. 
Numerical simulations of engineering processes involve 
translating physical behaviors into mathematical 
relationships that can be analyzed and solved using 
computers, enabling the modelling of specific problems 
[9]. Modelling becomes particularly valuable when 
experimental or analytical approaches prove inadequate 
or in cases where laboratory work is prohibitively time-
consuming, costly, or hazardous [10]. Welding different 
materials with varying chemical compositions, especially 
when using filler wires with distinct chemical 
compositions, complicates the observation of how filler 
wire composition influences porosity formation in welds 
[11]. In all arc welding processes, a method is employed 
to shield the molten weld pool from contact with the 
surrounding air. Submerged Arc Welding, in particular, is 
a favored approach due to its advantages, including high 
production rates, excellent melting efficiency, ease of 
automation, and a relatively low skill requirement for 
operators [12]-[14]. The quality of a weld is contingent on 
the bead geometry, which, in turn, hinges on various 
process variables. 
  
 
 

2. METHODOLOGY 
 
2.1 Experimental setup 
 
           A mobile phone camera was attached, placed 
above and to the side of the welding region, and 
programmed to take sequential pictures at a distance of 
0.7m in order to record the spatter photos. Spatter shots 
taken in both the vertical and horizontal directions were 
combined to create two-dimensional spatter images. 
Spatter distribution is assessed using shots taken 
vertically, whereas spatter counting is carried out using 
photos taken horizontally. At 240 fps, scatter pictures 
were captured. Due to the welding arc's brilliance, the 
spatter photos that were collected were primarily 
distorted. As a result, welding spatter was only tracked 
using an optical filter. The digital lens was equipped with 
a neutral-density (ND) optical filter; an ND filter equally 
filters incident light across the wavelength spectrum, 
resulting in crisper images.  
 
 
 2.2 Design of experiment 
  
          A design of experiment is a scientific approach to 
organizing and carrying out an experiment that will reveal 
a cause-and-effect relationship between variables. It can 
also be a methodical approach to altering process inputs 
and analysing the resulting process outcomes so as to 
measure the cause-and-effect relationship between them 
as well as the random variability of the process while 
requiring the least amount of runs.   Experimentation is a  
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crucial component of scientific research, which can be 
developed using computer softwares like design expert 
and Minitab. For appropriate polynomial approximation an 
experimental design is used to collect the data.  There are 
different types of experimental designs which includes 
central composite circumscribed, central composite face 
centered, full factorial, and latin hyper cube designs. 

2.3 Identification of range of input parameters 
 
          The primary considerations made in this study are 
welding voltage, welding current, wire diameter, and wire 
feed speed. Table 1 displays the variety of process 
parameters found in the literature

. 
 
                              Table 1: Process parameters and their levels 
 

Factors Unit Symbol Low (-1) High (+1) 

Welding Current Ampere I 180 240 
Welding Voltage Volts V 18 24 
Wire diameter Mn WD 1.2 3.0 
Wire feed speed Mm/min WFS 10 50 

 
 
2.4 Materials and experimental set-up  
 
          
For the experiments, 100 mild steel coupons with 
measurements of 80 x 40 x 10 (mm) were utilized. The 
investigation was conducted twenty times, with five 
samples per run. The plates' edges were machined and 
beveled before being welded using tungsten inert gas 
welding equipment. 10 mm thick plates of mild steel were 
TIG welded using different ranges of current, voltage, wire 
diameter and wire feed rate. In this research investigation, 
100% pure Argon gas was employed as a shielding gas 
throughout the welding process to protect the weld 
specimen from air interaction. To prepare the welded 
samples, they were all cut perpendicular to the welding 
axis, mounted in resin, and then ground using silicon 
carbide abrasive sheets on a rotating disk in five stages 
of 80, 300, 600, 1200, and 4000 grits (Mecatech 334). 
After polishing with 3 µm (microns) and 1 µm diamond 
pastes, the specimens were then etched by immersing 
them in sodium hydroxide solution (1g NaOH + 100 ml 

H2O) as an etchant for 45 seconds. A digital microscope 
is utilized to model number KEYNCE VHX-500F, the 
samples' macrostructure and microstructure were 
investigated.  Mild steel plate with a 10 mm thickness was 
used for the weld sample construction. The plate was 
powered hacksaw cut to size. Measurements and records 
of the reactions were made, the edges were ground, the 
surfaces were sanded with emery paper, and the 
connections were welded. The weld sample is shown in 
the figure below. In order to identify any phase changes 
at the cleaned surfaces, SEM was utilized to examine the 
laser-cleaned surfaces in comparison with a reference 
surface.   The scanning electron microscope used was a 
Hitachi High Technologies S-3400N Type I, 0.1-30 kV 
microscope. Figures 2A and 2B depict the TIG apparatus, 
Figure 2C the spatter images, and Figure 2C the shielding 
gas cylinder and regulator. 

 
 

 
 
              Figure 2: (A) TIG equipment (B) Shielding gas cylinder and regulator (C) Spatter images 
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2.5 Method of Data Collection 
 
          Using design expert software, the center composite design matrix was created, yielding 20 experimental runs. The 
experimental matrix is made up of the input and output parameters, as well as the outcomes noted for the data were 
taken from the weld sample. The data matrix is determined by the number of input parameters, which is provided by the 
equation 2n + 2n + k, where k is the quantity of center points, 2n is the quantity of axial points, and 2n is the quantity of 
factorial points. The data obtained were analysed using the Response Surface Methodology (RSM) and the Artificial 
Neural Network (ANN). 
 
 
2.6   Response Surface Methodology 
 
          Response Surface Methodology (RSM) is a popular tool used by engineers to look for the circumstances that 
would best the desired procedure. In other words, they are looking for the process input parameter values that produce 
the best possible answers. The optimal value given as a function of the process's input parameters could be either a 
minimum or a maximum. To explain how the welding process performs as well as identify the response that is best, RSM 
is one of the optimization strategies that is currently in general use.  RSM is a group of mathematical and statistical 
methods for prediction and modelling the interest response, which is influenced by a variety of input variables, with the 
aim of optimizing the response.  
 
 
Table 2: Analysis of Variance Components 
 

Variation Source Degree of Freedom Df Sum of Squares SS Mean Square MS 
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2
.7 Artificial Neural Network 
 
          A neural network is a distributed, highly parallel 
computer that is naturally inclined to store experimental 
information and make it accessible for application. It is 
used as a data mining tool to identify unknown patterns in 
datasets. In two ways, it resembles the brain. A learning 
process occurs within the network, and synaptic 
weights—internal neuron connection strengths—are 
employed to store the knowledge.  R input to an 
elementary neuron is weighted with the appropriate w. 
The input to the transfer function f is made up of the bias 
added to the weighted inputs. In order to generate their 
output, neurons can use any differentiable transfer 
function f. The transfer function logsig of a log-sigmoid is 
frequently applied to multilayer networks. The function 
logsig generates outputs between 0 and 1 as the neuron's 

net input changes from a negative value to a positive 
infinity. An alternative using the tan-sigmoid transfer 
function or tansig, in multilayer networks. Pattern 
recognition issues are frequently solved using sigmoid 
output neurons, whereas function fitting issues are 
typically solved using linear output neurons. The artificial 
neural network is a data mining tool, which uses the 
theory of the human brain and the neurone 
communication technique that has been programmed into 
a software. It is a predictive tool analyses a data by the 
following process: training, learning validating and testing.  
 
 
3.0 RESULTS 
 
In this study, two expert methods were used to examine 
the information gathered from the tests using the artificial  
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neural network (ANN) and the response surface 
methodology (RSM). 
 
 
3.1 Modelling and Optimization using Response 
Surface Methodology (RSM) 
 
          The second order effects of non-linear relationships 
are included in the Response Surface Model, a 
modification on simple linear regression. Finding the ideal 
combinations of factors to determine a particular 
response to an event is a common optimization approach. 
RSM is particularly useful to understand the connection 
between multiple predictor variables with multiple 
predicted responses. 
          The optimization model's objective was to minimize 
the pore size. The optimization process's final answer 
was to establish the ideal value for each input variable, 
primarily current (Amp), voltage (V), wire diameter and 

wire feed speed that will give us the best weld output 
results. 
          To gather experimental data to aid in optimization. 
 
i. A statistical design of experiment (DoE) was carried out 
utilizing the central composite design approach (CCD). 
The design and optimization were carried out with the 
assistance of a statistical tool. Design Expert 7.01 was 
used to solve this particular challenge. 
  
ii. Thirty experimental runs were developed by an 
experimental design matrix containing six center points 
(k), eight axial points (2n), and sixteen factorial points 
(2n).  
 
          The sequential model sum of squares for pore size 
response was calculated to validate the quadratic model's 
applicability in evaluating the experimental data, as 
shown in Table 3. 

 
        Table 3: Sequential model sum of square for  pore size 

 
 Sum of  Mean F p-value  

Source Squares df Square Value Prob > F  
Mean vs Total 4.10 1 4.10    
Linear vs Mean 0.085 4 0.021 1.30 0.2961  
2FI vs Linear 0.26 6 0.043 5.44 0.0020  
Quadratic vs 2FI 0.14 4 0.036 89.03 < 0.0001 Suggested 
Cubic vs Quadratic 1.617E-003 8 2.021E-004 0.32 0.9341 Aliased 
Residual 4.433E-003 7 6.333E-004    
Total 4.59 30 0.15    

 
          The model statistics for the pore size response that were determined based on the model sources are displayed 
in Table 4. 

 
         Table   4: Model summary statistics for  pore size 
 

 Std.  Adjusted Predicted   

Source Dev. R-Squared R-Squared R-Squared PRESS  
Linear 0.13 0.1725 0.0401 -0.2836 0.63  
2FI 0.089 0.6957 0.5355 0.4738 0.26  
Quadratic 0.020 0.9877 0.9762 0.9292 0.035 Suggested 
Cubic 0.025 0.9910 0.9627 -0.2978 0.64 Aliased 

 
          The goodness of fit statistics reported in table 5 were used to assess the validity based on the quadratic model's 
capacity to minimize pore size. 
 
        Table 5: Goodness of fit statistics for pore size 
 

Std. Dev. 0.020 R-Squared 0.9877 

Mean 0.37 Adj R-Squared 0.9762 
C.V. % 5.43 Pred R-Squared 0.9292 
PRESS 0.035 Adeq Precision 39.551 

 
          To adopt any model, its suitability must first be 
validated by the results of an acceptable statistical 
investigation. To determine whether a value or group of 

values the model is unable to detect, the projected values 
are plotted against the actual values, as illustrated in 
Figure 5. The cook's distance plot was created for each  
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response to identify whether an outlier is likely present in 
the experimental data. The generated cook’s distance for  

the pore size is presented in Figure 6.

 
 

     
 
Figure 5: Plot of Predicted Vs Actual for pore size        Figure 6:  cook’s distance  plot for pore size 
 
          To investigate the impact of 3D surface plots of 
combined input factors on pore size are shown in Figure 
7 was generated. To investigate the impact of 3D surface 

plots of combined input factors on pore size are shown in 
Figure 8. 

 
 
 

       
 
Figure 7: Effect of current and voltage on pore size   Figure 8: Effect  of current and wire feed speed on pore size 

 

3.2 Modelng and Optimization using Artificial Neural Network (ANN) 
 
   
Inputs 'input' is a 4x30 matrix, 30 samples of four 
elements are used to represent static data. The 'pole size' 
of Targets is a 1x30 matrix that represents static data: 30 
samples of 1 element. The ANN network  architecture has 

4 input , figure 9 depicts the network architecture pore 
size of 10 neurons in the hidden layer and 1 neuron in the 
output layer.
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                 Figure 9: Artificial neural network architecture for predicting pore size 
 
          
          It is recommended that a set of data be set aside 
for validation and testing, therefore, that data obtained 
from this research were divided into three part with 70% 
of the experimental sample data, used for training 15% 
used for validation, while the remaining 15% was 
employed to put the neural network model to the test.  It 
was noticed that the training of the network model 
provided a correlation having 85.4% with a mean square 
error of 15.47E-0. The validation of the network model 
produced a correlation of 89.6% with a mean square error 
of 12.84E-0. the testing of the network model produced a 
correlation of 73.8% with mean square error 46.56E-0. 

The data division algorithm (dividerand), the training 
algorithm (trainlm), and the performance algorithm (mse) 
were all set to random. The pore size performance plot 
was created to test for network learning.  At epoch 3, the 
best validation performance was obtained, which is 
shown in Figure 10. A gradient function plot is produced 
for the pore size network. It displays the number of 
epochs consumed throughout the training procedure. 
One epoch represents one entire algorithm training. 
Figure 11 demonstrates that the best prediction was 
attained at the third epoch, after using 5 epochs. The 
gradient function diagram is presented in figure 11

. 
 

       
 
Figure 10: Performance curve for trained network to predicting Pore size responses Figure 11: Neural network gradient 
plot for predicting Pole size responses 
 
          
A regression plot was produced to check the relationship 
that exists between the visible values and the network  
 
 

predicted values. The regression plot for the pore size 
network is presented in figure 12. 
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                Figure 12: Regression plot of training, validation and testing for Pore size responses 
 
         Figure 12 shows a plot of training, validation, and 
testing with a correlation coefficient (R) of more than 70%, 
indicating a reliable prediction of pore size.  The dotted 

diagonal line on each plot indicates the line of best fit 
which signals a perfect prediction and a correlation of 1

. 
 
3.3 Comparison between the Experimental values, RSM and ANN values 
 
         
          A time series plot which can help to appreciate the 
graphical difference between the experimental result and  

the network output for pore size as shown in figure 13.

 

 
                                        Figure 13: A time series plot for pore size   
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          A fitted plot for the artificial network output was 
done to ilustrate the correlation between the experimental 

and the pore sizemodel developed,which is shown in 
figure 4.58 

 
 
 

 
 
                           Figure 14: fitted line plot for the pore size 
 
                          The regression equation is   EXP = 0.667 + 0.8428 ANN 
 
            The model summary statistics for the pore size 
network is produced which shows the strength of the 
network output,  

the result is shown in table 6

. 
 
                                                         Table 6: Model Summary 
 

S R-sq R-sq(adj) 

3.68731 74.12% 73.19% 

 
          The analysis of variance for the network output to 
check  

for the significance of the network as shown in table 7. 

 
                                          Table 7: Artificial Neural Network Analysis of Variance for pore size 
 

Source DF SS MS F P 

Regression 1 1090.18 1090.18 80.18 0.000 
Error 28 380.70 13.60     
Total 29 1470.87       

 
 
 
4.0   DISCUSSION 
 
          Two expert methods, namely, Response Surface 
methodology and the Artificial Neural Network have been 
used to explain the connection existing between welding 
process parameter and the pore size. The input 
parameters include current, voltage, wire diameter and 
wire feed speed. The first method used was the Response  

 
 
Surface methodology and the result obtained shows that 
the second order polynomial model best explains the 
behaviour of the experimental data. The link between 
process parameters and pore size is quadratic, with a 
substantial correlation between voltage, wire diameter 
and pore size with a p value < 0.00001. The variance  
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inflation factor (VIF) was 1.00 which shows that the model 
is substantial because a (VIF) greater than 10.00 is a 
cause for alarm. The goodness of fit statistics yielded a 
Coefficient of determination R2 of 0.9877 to support the 
model's significance and appropriateness based on its 
ability to predict pore size.  Finally, numerical optimization 
was obtained.  With a desirability value of 0.939, Design 
Expert 7.01 software chose this solution as the best one.  
The second statistical tool used is the Artificial Neural 
Networks was also used to predict the electrode density, 
spatter index, pore size and porosity. The input data are 
divided into three sets at random. 70% of the resources 
are utilized to train the network, while 15% are used to 
assess network performance and 15% are used for the 
test.  The levenberg marquardt algorithm was used for 
training. For the training interphase the network provided 
a correlation having 85.4% with a mean square error of 
15.47E-0. The validation of the network model produced 
a correlation of 89.6% with a mean square error of 
12.84E-0. the testing of the network model produced a 
correlation of 73.8% with mean square error 46.56E-0. 
The performance plot and the correlation plot showed that 
the network learnt accurately and can be used to predict 
the target responses. 
 
 
5.0  CONCLUSION 
 
          The lesser the porosity in a weld structure, the 
better. Reducing weld defects and increasing weld quality 
improving reactions define weld quality and strength. The 
response surface methodology, and artificial neural 
network model were employed to predict and optimize 
these output parameters mentioned in this study. From 
the results obtained From the results, it is seen that (i) the 
ANOVA result showed that the lower the current and wire 
diameter the lower the porosity of the weld and (ii) the 
optimal solution of the RSM model is preferred as it is able 
to predict minimized porosity. Hence, the response 
surface methodology is selected as the best optimal 
solution. The application of expert systems, such as 
artificial neural network models and response surface 
techniques, increased the quality of tungsten inert gas 
welding.  This research optimized welding response pore 
size, the optimal solution will help to produce welds with 
minimum pore size, thus, the strength, reliability and 
accuracy of the models have been tested and validated.  
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