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Abstract:  Pipeline networks play a pivotal role in transporting an array of fluids and gases across various industrial 
domains. The study aims to fill this void by investigating the impact of a specific non-flexible component, namely the 
surface area of contact, on pipeline weldments and its interaction with elastic properties. To fulfil this objective, a 
comprehensive experimental inquiry is conducted, encompassing diverse welding methods, materials, and 
environmental conditions to authentically replicate real-world situations. The response surface methodology analysis 
yields optimal outcomes, suggesting a depth of cut of 0.400, cutting speed of 250.000, and feed rate of 0.500. These 
input parameters collectively yielded a machined structure with tool life of 149.958 and this was attained at a desirability 
value of 0.973. Additionally, the Artificial Neural Network model is utilized to forecast output parameters and compared 
against the Response Surface Methodology. The findings underscore the pivotal role of optimizing non-elastic 
performance factors in pipeline weldments. By accurately controlling the surface area of contact, weldments can be 
designed with capabilities of enduring harsh conditions, curbing the risk of failures, and significantly prolonging pipeline 
operational lifespans. 
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1. INTRODUCTION 

           A primary factor that restricts machining 
productivity is the lifespan of the tool [1]. The state of the 
cutting tool, a pivotal component in the machining process 
that directly interacts with the workpiece, significantly 
influences the quality of the final product and production 
expenses. Ongoing wear leads to the degradation of the 
cutting tool's condition. Neglecting this aspect could lead 
to a decline in machining accuracy and potentially 
unexpected machine tool downtime [2]. A crucial aspect 
in the turning process is to forecast the tool's lifespan to 
avoid unnecessary material wastage and resource 
depletion [3]. The tool life in machining operations is a 
critical parameter influencing manufacturing efficiency 
and cost-effectiveness. Extending tool life is a primary 
objective in machining industries, as it directly impacts 
production downtime, tool replacement costs, and overall  

 
 
productivity. Tool life enhancement is pivotal in machining 
operations, as it contributes to reduced production costs, 
minimized downtime, improved surface quality, and 
enhanced overall machining efficiency. Prolonging tool 
life directly translates to economic and environmental 
benefits. Various materials are used in machining, each 
presenting unique challenges and opportunities for tool 
life enhancement. Ideally, in the implementation of 
machining processes, the optimal scenario is predicting 
tool performance without the need for real-world 
experimentation. Yet, given the variability in machine-tool 
configurations, materials being processed, cutting tools, 
and fixture systems within an industrial environment, 
every set of machining condition remains unique [4]. The 
generation of thermo-mechanical stresses during the chip 
formation process of machining operations can lead to a  
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diminished lifespan of the cutting tool and the quality of 
machined components are impacted, therefore, analyzing 
cutting temperatures and the longevity of the cutting tool 
during milling can enhance manufacturing productivity by 
leveraging CNC machine tools [5]. Broadening the scope 
of automated turning processes consistently demands 
adherence to stringent standards for precise tool life 
predictions. Evaluating tool life is typically an expensive 
procedure that necessitates a significant investment of 
time and materials. Therefore, it is critical to estimate tool 
life and the cutting-edge replacement schedule precisely 
before faults or catastrophic wear interrupt the procedure. 
This is especially true because precise tool life is essential 
for maximizing cutting productivity and minimizing turning 
process costs. Tool cutting edge wear directly affects how 
long a tool will last [6]. Accurately predicting tool lifespan 
stands as a pivotal element in intelligent and automated 
machining processes. This practice also contributes 
towards the objective of producing top-notch products 
while lowering production costs [7]. Ensuring quality in the 
manufacturing process and enhancing production 
efficiency necessitates precise prediction of cutting tool 
lifespan [8]. In a recent publication, [9] investigated the 
feasibility of predicting tool lifespan in a side milling 
application by employing empirical models of tool life in 
medium carbon steel. Additionally, [10] developed an 
algorithm utilizing a genetic algorithm to accurately 
forecast the tool's lifespan in their research. The 
manufacturing industry required specific dimensional 
components or parts in diverse engineering applications, 
with machining serving as the essential method to 
achieve this. These industries faced continuous pressure 
to devise effective strategies employing various 
optimization methods to increase production, reduce 
costs, conserve energy, enhance product quality, and 
extend the life of tools. The primary goals centered 
around cost-effective operations, minimal energy 
consumption, and superior product quality, all rooted in 
production management concepts. The sustainable 
machining selection technique identified the crucial 
turning input factors influencing energy consumption and 
tool lifespan. Various dilemmas related to economic and 
environmental concerns were explored, focusing on 
innovative methods to reduce energy usage and improve 
tool life. The optimal input turning parameters and their 
limitations play a significant role in meeting the 
requirements for energy efficiency and tool longevity [11]. 
[12] Introduced an extended Taylor's functional 
correlation in their study by incorporating tool work 
temperature measurements. By utilizing thermocouple 
temperature readings at the tool's workplace, this system 
enabled the prediction of tool life, differing from traditional 
tool-wear studies. Conventional tool-life testing methods 
were then implemented to validate the reliability of the 
suggested temperature-based approach for estimating 
tool lifespan. These methods included employing 
standard experimental protocols to examine tool-to-
surface interactions [13]. [14] found that at low "cutting 
speed conditions," A rise in the feed rate resulted in a 

decrease in tool life and the development of build-up 
edges because of escalating temperatures. Conversely, 
they observed that the depth of cut has a lesser impact on 
tool life concerning temperature elevation. Due to the 
minute-area plastic deformation occurring in the cutting 
tool during machining, a significant quantity of heat is 
produced. This elevated temperature significantly affects 
the mechanics of chip formation, tool wear, tool lifespan, 
and the surface integrity and quality of the workpiece. 
Hence, comprehending this temperature is crucial [14]. 
[15] noted that when utilizing a flank wear criterion of 0.3 
mm, the coated carbide insert exhibited a lifespan 15 
times longer than the uncoated carbide insert. [16] 
Applied a multi-objective optimization technique 
employing the NSGA-II algorithm and BP neural network 
to tackle concerns regarding high carbon emissions and 
shortened tool life in CNC milling.  This study is focused 
on forecasting and enhancing the lifespan of specific 
tools, crucial in contemporary pipeline welding using 
expert systems. Prolonging tool life directly influences 
heightened productivity, reduced environmental effects, 
and cost efficiencies. This multidisciplinary realm 
integrates data analytics, machining technology, science 
of materials, and mathematics. 
 
 
2. METHODOLOGY 
 
           According to the number of input parameters, an 
experimental plan was established for this research study. 
The matrix was generated using software specifically 
designed for experts in design. The design incorporated 
both the central composite design (CCD) and the 2k 
factorial design. The CCD was used for input parameters 
evaluated within a range of three to five levels, whereas 
the 2k factorial design was implemented for any number 
of input parameters considered at two levels. The central 
composite design for this study, encompassing 20 
experimental runs, was developed using the 7.1 program 
for the layout. The test runs incorporated the findings of 
the selected material along with input and output 
parameters. This matrix was then subjected to analysis 
using Artificial Neural Network (ANN) and Response 
Surface Methodology (RSM) approaches. 
 
 
2.1 Response Surface Methodology (RSM) 
 
          RSM are extensively used in situations where there 
are many input factors that may influence one or more 
response variables. Response Surface Methodology 
(RSM) integrates quantitative and statistics-based 
models to analyze processes where the central aim is to 
optimize a desired outcome affected by various variables. 
It plays a vital role in crafting, designing, and developing 
new products, as well as in refining existing designs. The 
core components of the response surface approach 
involve regression analysis, optimization algorithms, and  
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experimental design, which are employed to explore the 
empirical connections between variables. 
 
 
2.2 Artificial Neural Network 
 
          A neural network is a highly parallel distributed 
computer system capable of storing experimental data for 
multiple applications. It functions as a data mining tool 
and is primarily designed to uncover hidden patterns 
within datasets. Interestingly, there are two key 
similarities between neural networks and the human 
brain. First, during the learning process within the 
network, synaptic weights are employed to store 
knowledge. These weights indicate the strength of 
connections between internal neurons. Second, each 
basic neuron with R inputs receives appropriate weights 
(w), and the transfer function (f) calculates the total of 
these weighted inputs along with a bias term. The transfer 
function (f) utilized to compute neuron outputs can be any 
differentiable function.  

 
3.0 RESULTS AND DISCUSSION 
 
          This study comprised 20 experimental trials, each 
involving variations in feed rate, spindle speed, and depth 
of cut. Responses were measured for each individual 
experiment. 
 
 
3.1 RSM-Based Modelling and Optimization  
 
          This study endeavours to establish a quadratic 
mathematical association between chosen input variables 
- specifically, cutting speed, feed rate, and depth of cut - 
linked with four response variables, including tool life, 
using response surface methodology (RSM). The 
objective of the maximization model is to optimize tool life. 
Table 1 displays the sequential total of squares for tool life 
response as a means of evaluating system adequacy. 

 
               Table 1: Sequential Model Sum of Squares tool life 
 

Source 
Sum of 

Squares 
df 

Mean 
Square 

F-value p-value  

Mean vs Total 2.439E+05 1 2.439E+05    

Linear vs Mean 7386.43 3 2462.14 20.76 < 0.0001  

2FI vs Linear 374.10 3 124.70 1.06 0.3980  

Quadratic vs 2FI 1333.60 3 444.53 23.41 < 0.0001 Suggested 

Cubic vs Quadratic 51.32 4 12.83 0.5554 0.7038 Aliased 

Residual 138.60 6 23.10    

Total 2.532E+05 20 12660.42    
 

To better determine the most suitable model for the Tool 
Life, a lack of fit test was conducted, and the model 

showing least significant lack of fit was chosen. The lack 
of fit table for the Tool Life is shown in Table 2. 

 
 
                Table 2: Lack of Fit Tests tool life 
 

Source 
Sum of 
Squares 

df 
Mean 

Square 
F-value p-value  

Linear 1769.97 11 160.91 6.30 0.0273  

2FI 1395.87 8 174.48 6.83 0.0244  

Quadratic 62.27 5 12.45 0.4878 0.7752 Suggested 

Cubic 10.95 1 10.95 0.4289 0.5414 Aliased 

Pure Error 127.65 5 25.53    

 
            To further evaluate the framework's applicability, 
the Tool Life summary statistics were looked at. The 
model with the highest coefficient of determination is 

preferable. The Table 3 displays the model overall 
statistics for the Tool Life. 

 
                    Table 3: Model Summary Statistics tool life 

Source Std. Dev. R² 
Adjusted 

R² 
Predicted 

R² 
PRESS  

Linear 10.89 0.7956 0.7573 0.6429 3315.08  

2FI 10.83 0.8359 0.7602 0.6688 3075.31  

Quadratic 4.36 0.9795 0.9611 0.9284 665.15 Suggested 

Cubic 4.81 0.9851 0.9527 0.7202 2597.55 Aliased 
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           The goodness of fit statistics test was conducted 
to evaluate robustness of the developed framework for  

tool life, illustrated in Table 4. 

 
Table 4: Goodness of Fit Statistics for Tool life 

 

Std. Dev. 4.36  R² 0.9795 

Mean 110.44  Adjusted R² 0.9611 

C.V. % 3.95  Predicted R² 0.9284 

   Adeq Precision 29.9599 

 
          There is a disparity of less than 0.2 between the 
Adjusted R² of 0.9611 and the Predicted R² value of 
0.9284. Adequate Precision evaluates the ratio of 
signal to noise. A ratio higher than 4 is ideal.  

To demonstrate the frame work's suitability for the data 
concerning Tool Life, Figure 1 displays a normal plot of 
residuals for Chip Size

. 
 

 
Figure 1: Normal Plot of Residuals for Tool Life 

 

           The normal probability plot serves to determine if 
the residuals conform to a normal distribution, with a 
straight-line indicating normality. Even a moderate scatter 
can be linked to normally distributed data. The normal plot 
of residuals Tool Life revealed a moderate scatter 
indicating that the data is normal. 
 

           To detect for the presence of mega patterns or 
expanding variance a plot of residuals and the predicted 
was produced for Tool Life which is shown in the Figure 
2. 

 

 
Figure 2: Plot of Residual Versus Predicted for Tool Life 
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A Cook's distance plot was made especially for Tool Life in order to find any possible outliers in the information 

collected during the experiment. Cook's distance calculates the change in regression that would occur if an outlier were 

taken out of the analysis. When a point shows a significantly higher distance value than the rest, it may be an anomaly 

and needs to be looked into. Figures 3 present the generated cook's distance for Tool Life. 

 

Figure 3: Cook Distance for Tool Life 

           To identify any values or groups that the model 

doesn't readily detect, a plot of predicted values against  

actual values for Tool Life is depicted in Figure 4. 

 

 

Figure 4: Plot of Predicted Vs Actual for Tool Life 

 

          Points that are closely aligned with the fitted line 
are displayed on the graph. Essentially, the model 
adequately predicts the majority of the data points. 
          The 3D surface plot, illustrating the impact of feed 
rate and cutting speed on the chip removal rate,  
 
 
 
 
 

demonstrates that an increase in both feed rate and 
cutting speed leads to a higher chip removal rate. 
nonetheless, the feed rate exhibits a more pronounced 
effect on the chip removal rate as shown in Figure 5. 
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Figure 5: Effect of Cutting Speed and Depth of Cut on Cutting Force 

Figure 6 shows a 3D surface plot, displaying the impact 
of cutting speed and depth of cut on tool life, 
demonstrates that greater cutting speed correlates with 

more tool life, while a decrease in depth of cut 
corresponds to a reduction in tool life. 

 

 

Figure 6: Effect of Feed Rate and Depth of Cut on Tool Life 

           Figure 7 depicts the 3D surface plot showing the 
impact of feed rate and depth of cut on tool life. tool life  
 
 
 
 
 
 
 
 

diminishes with a rise in feed rate, although it is not 
significantly affected by an improvement in depth of cut. 
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Figure 7: Effect of Feed Rate and Cutting Speed on Tool Life 
 
 
The 3D surface plot in Figure 7 reveals that increase in 
feed rate leads to decrease in the tool life while increase 
in the cutting speed leads to increase in the tool life. 
 

 

3.2 Prediction of the Tool Life using ANN 
 
MATLAB R2022a is used in the analysis for the Artificial 
neural network. After being put into the MATLAB folder, 
the data is standardized by being put into a Numeric 
Matrix format. This will immediately select the range of the 
dataset, and import selection is used to load the data into 
MATLAB. The Levenberg-Marquardt Back Propagation, 
an enhanced second-order gradient method, was chosen 
as the most effective learning rule and subsequently 
employed in crafting the network architecture. In order to 
ascertain the optimal count of hidden neurons, various 
quantities of hidden neurons were chosen to establish a 
trained network utilizing the Levenberg-Marquardt Back 
Propagation training algorithm. The network performance 
was observed with 20 neurons set for each hidden layer 
using coefficient of determination (r2) and MSE. The 
network's input layer employs the hyperbolic tangent (tan-
sigmoid) transfer function to compute the layer output 
based on the network input, while the output layer utilizes 
the linear (purelin) transfer function. During the network 
construction phase, the input data is divided into training, 
validation, and testing datasets. In this research work, 
70% of the data was utilized for training the network, 15% 
for validating the network, and the remaining 15% to 
assess the network's performance, with a maximum of 
1000 epochs in the training cycle. Trainlm is a network 

training function that adjusts weight and bias values using 
Levenberg-Marquardt optimization. With these 
parameters, an optimal neural network structure was 
created, as depicted in Figure 8. The identical network 
architecture was employed to predict tool life as a singular 
response variable, utilizing three input variables. The 
Artificial Neural Network architecture is structured as 3-
20-1. 
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Figure 8: Artificial Neural Network Architecture 
 

 
              In the network training diagram displayed in 
Figure 8, the observed network performance stood at 
2.79e+03. A validation check of three (3) was noted out 
of a total of six (6). Nonetheless, this outcome was 
anticipated as the concern regarding weight bias was 

rectified through the normalization of the raw data. Figure 
9 displays a performance evaluation plot illustrating the 
progression of training, validation, and testing. 
 

 

 
                                           Figure 9: Trained Network's Performance Curve for Tool Life Prediction 
 
 
          The performance plot in Figure 15 didn't reveal 
signs of overfitting. Additionally, a consistent pattern was 
observed in the conduct of the training, validation, and 
testing curves, which was normal as the raw data had 
been standardized prior to use. A key indicator for 
evaluating a network's training accuracy is the lower 

mean square error. At epoch 3, an error value of 
1259.1166 demonstrates a network's strong ability to 
predict tool life. Figure 10 showcases the training state 
featuring the gradient function, training gain (Mu), and, 
validation check. 
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                                  Figure 10: State of Neural Network Training for Tool Life Prediction 
 
          Within artificial neural networks, backpropagation is 
a method employed to ascertain the error input of the 
neurons, one by one, after processing a batch of training 
data. In more technical language, the network calculates 
the loss function's gradient to explain the error 
contribution of each chosen neuron. A smaller error is 
generally more desirable. Computed gradient value of 
2.9154e-10 as observed in Figure 10 indicates that the 
error contributions of each selected neurons is 

insignificant. The control parameter governing the neural 
network training process is referred to as momentum 
gain, denoted as Mu. Its value should be below one since 
it represents the training gains. Momentum gains at 1e-07 
signify a highly predictive network for tool life. Figure 11 
portrays the regression graph, depicting the correlation 
between the input factors (DOC, cutting speed, and feed 
rate) and the target variable (tool life), along with the 
progression of training, validation, and testing. 

 
 

 
 

Figure 11: Regression Plot Demonstrating the Progression of Training, Validation, and Testing 
 
Based on analyzing the computed correlation coefficient 
values as depicted in Figure 11, it was deduced that the 
network has been effectively trained and can be utilized 
for predicting tool life. 
 
 
4.  CONCLUSION 
 
Chip size, chip removal rate, and cutting force all affect 
how long a machined engineered structure lasts in 

operation. To enhance and predict tool life, this research 
constructs numerical models incorporating feed rate, 
depth of cut, and cutting speed. These models are 
subsequently formulated using artificial neural networks 
and response surface methods. The Response Surface 
Method (RSM) analysis yielded the best solutions with a 
depth of cut of 0.400, cutting speed of 250.000, and feed  
rate of 0.500, resulting in a machined structure with a tool 
life of 149.958, achieved at a desirability value of 0.973. 
The experimental design employed was the central  
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composite design, which was created using the Design 
7.1 software. In addition to forecasting the output 
parameters, the artificial neural network model was 
utilized and compared with the RSM methodology. The 
Response Surface Methodology, having a higher 
coefficient of determination compared to the artificial 
neural network, is selected as the superior predictive 
model based on the obtained data. 
 
 
REFERENCES 
 
[1] Liu R., Kothuru A. and Zhang S. (2020). ‘Calibration-
based tool condition monitoring for repetitive machining 
operations’, Journal of Manufacturing Systems, 54, Pg 
285-293. 
 
[2] Soori, M., & Arezoo, B. (2023). Effect of cutting 
parameters on tool life and cutting temperature in milling 
of AISI 1038 carbon steel. Journal of New Technology 
and Materials. 
 
[3] Karandikar, J., Schmitz, T., & Smith, S. (2021). 
Physics-guided logistic classification for tool life modeling 
and process parameter optimization in 
machining. Journal of Manufacturing Systems, 59, 522-
534. 
 
[4] Bazaz, S. M., Lohtander, M., & Varis, J. (2020). The 
prediction method of tool life on small lot turning process–
development of Digital Twin for production. Procedia 
Manufacturing, 51, 288-295. 
 
[5] Krishnan, A.M., Prabagaran, S., Venkatesh, R., 
Kumar, D.S., Christysudha, J., Seikh, A.H., Iqbal, A. and 
Ramaraj, E., 2023. Optimization and prediction of CBN 
tool life sustainability during AA1100 CNC turning by 
response surface methodology. Heliyon, 9(8). 
 
[6] Mikołajczyk, T., Nowicki, K., Bustillo, A., & Pimenov, 
D. Y. (2018). Predicting tool life in turning operations 
using neural networks and image processing. Mechanical 
systems and signal processing, 104, 503-513. 
 
[7] Kovac, P., Gostimirovic, M., Rodic, D., & Savkovic, B. 
(2019). Using the temperature method for the prediction 
of tool life in sustainable production. Measurement, 133, 
320-327. 
 
[8] Boing, D., Castro, F. L., & Schroeter, R. B. (2020). 
Prediction of PCBN tool life in hard turning process based 
on the three-dimensional tool wear parameter. The 
International Journal of Advanced Manufacturing 
Technology, 106, 779-790. 
 
[9] Bagga, P.J., Patel, K.M., Makhesana, M.A., Şirin, Ş., 
Khanna, N., Krolczyk, G.M., Pala, A.D. and Chauhan, 
K.C., 2023. Machine vision-based gradient-boosted tree 

and support vector regression for tool life prediction in 
turning. The International Journal of Advanced 
Manufacturing Technology, 126(1-2), pp.471-485. 
 
[10] Liu, Y., Zhang, J., Hu, X., & Sun, S. (2022). Sensor 
data anomaly detection and correction for improving the 
life prediction of cutting tools in the slot milling 
process. The International Journal of Advanced 
Manufacturing Technology, 1-13. 
 
[11] Parida, A. K., & Maity, K. (2018). Experimental 
investigation on tool life and chip morphology in hot 
machining of Monel-400. Engineering Science and 
Technology, an International Journal, 21(3), 371-379. 
 
[12] Pereira, B. M., Da Silva Fe, C. M., Amaral de 
Figueiredo, D., Correia, F. S., Macedo, M. G. (2022). 
Cutting temperature measurement and prediction in 
machining processes: comprehensive review and future 
perspectives. The International Journal of Advanced 
Manufacturing Technology, 120(5-6), 2849-2878. 
 
[13] Kumar, R., Sahoo, A. K., Mishra, P. C., Das, R. K. 
(2018). Comparative study on machinability improvement 
in hard turning using coated and uncoated carbide inserts: 
part II modeling, multi-response optimization, tool life, and 
economic aspects. Advances in Manufacturing, 6, 155-
175. 
 
[14] Yi, W., & Yin, R. (2023). Optimization of CNC Milling 
Parameters Based on Tool Life and Process Carbon 
Emission Prediction Models. In Journal of Physics: 
Conference Series. IOP Publishing. 2561(1), 012015. 
 
[15] Kantojarvi, F., Vikenadler, E., Johansson, D., 
Hägglund, S., & M’Saoubi, R. (2023). Predicting tool life 
for side milling in C45 E using Colding and Taylor tool life 
models. Advances in Industrial and Manufacturing 
Engineering, 7, 100126. 
 
[16] Kong, J. S. (2018). Optimization of the Tool Life 
Prediction Using Genetic Algorithm. Journal of the Korea 
Academia-Industrial cooperation Society, 19(11), 338-
343. 

 

 

 

 

 

 

 

 

.10. Spr Int. Eng. Res J.  Engineering Research Papers 


