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Abstract 
Asset integrity management is a complex task in the oil industry, particularly in surface production facilities. Pressure 
vessels, crucial for storing and transporting gases and liquids under high pressure, are susceptible to various damage 
mechanisms. Ensuring their integrity is vital to prevent catastrophic failures. This study aims to develop a multidisciplinary 
approach to asset integrity management (AIM) by integrating expert knowledge, survey questionnaires, and data 
analytics (non-parametric and machine learning). Two sets of questionnaires were developed in which the Kendall 
Coefficient of Concordance (W) ranked the features of AIM and the Random Forest Classifier ranked the NDT 
techniques. W showed that Corrosion (79), Pressure (84), Temperature limits (87), Vibration (93), Maintenance 
Strategies (96), Inspection Techniques (106) are the most important ‘AIR’ parameters while the Phased Array ultrasonic 
testing, Time of flight Diffraction, Acoustic Emission Testing, Eddy current testing, Pulsed Eddy current are the most 
important NDT techniques. The study provides a practical framework for controlling and minimizing incidents in oil and 
gas operations, ultimately contributing to improved safety and efficiency by providing insights into which features are 
most influential as regards AIR and NDT techniques. 
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1. INTRODUCTION 
 
      Asset integrity and reliability are critical concerns in 
the oil and gas industry, particularly in the context of crude 
oil pressure vessels [1]. These vessels are subject to 
extreme operating conditions, including high pressures 
and temperatures, which can lead to degradation and 
failure over time [2]. The consequences of vessel failure 
can be severe, resulting in costly repairs, production 
downtime, and potentially catastrophic safety and 
environmental risks [3]. In recent years, the increasing 
availability of sensor data and advances in machine 
learning and data analytics have created new 
opportunities for improving asset integrity and reliability. 
By leveraging these technologies, operators can gain 
deeper insights into the condition and performance of 
their vessels, enabling more informed maintenance and 
repair decisions [4][5] [6]. The importance of asset 
integrity and reliability in the oil and gas industry is well 
established. Various studies have highlighted the need for 
effective maintenance and repair strategies to ensure the 
safe and reliable operation of critical assets like crude oil 
pressure vessels [7][8]. Traditional approaches to vessel  

 
 
integrity management rely heavily on periodic inspections 
and manual data collection, which can be time-
consuming, costly, and prone to human error [9]. In 
contrast, data-driven approaches leveraging machine 
learning and advanced analytics offer significant potential 
for improving the accuracy and efficiency of vessel 
integrity assessments [10].  Non-parametric tests, such as 
the Kolmogorov-Smirnov test and the Mann-Whitney U 
test, have been widely used in various fields for 
comparing distributions and identifying patterns in data 
[11]. In the context of vessel integrity management, these 
tests can be used to identify anomalies and trends in 
sensor data that may indicate potential issues with vessel 
performance or condition [7]. Machine learning 
algorithms, such as neural networks and decision trees, 
have also been successfully applied to various problems 
in the oil and gas industry, including predictive 
maintenance and asset integrity management [8][10]. 
These algorithms can be trained on historical data to learn 
patterns and relationships between different variables, 
enabling accurate predictions and classifications [12].  
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Several studies have demonstrated the effectiveness of 
machine learning approaches for predicting vessel 
integrity and reliability. For example, [7] developed a 
neural network-based model for predicting the remaining 
useful life of crude oil pressure vessels, while [8] used a 
decision tree-based approach to identify potential 
anomalies in vessel performance data. Despite being 
considered the safest means to transport oil and gas, 
pipelines are susceptible to degradation. Pipeline integrity 
management (PIM) is implemented to lower the risk of 
failure due to degradation and to maintain the functionality 
and safety of pipelines [13]. Pipelines are economical and 
efficient modes of transporting oil and gas. Pipelines will 
inevitably confront various risk factors throughout their 
lifespan, which could lead to defects. Defects in pipelines 
can compromise the integrity of the pipeline systems and 
may result in catastrophic accidents [14]. Corrosion is one 
of the many pipeline defects that mostly appear in a 
colony such that they interact to reduce the failure 
pressure, which is not defined by features of a single 
corrosion defect. The huge amount of corrosion defects 
captured by in-line inspection tools including the variability 
of defect profile in pipelines and the dependence of the 
reliability assessment on such data pose significant 
research challenges in performance assurance. In the 
research by [15], a novel approach is proposed for that 
involves computationally efficient modelling schemes to 
estimate the burst pressure of pipelines affected by both 
longitudinal and circumferential interacting corrosion 
defects by combining supervised machine learning 
methods with 25 numerical models of corroded pipelines, 
validated with experimental results available from 
literature. Catalytic cracking is a crucial process in 
petroleum refineries, enabling the conversion of heavy 
hydrocarbons into lighter, more valuable products [16]. 
This complex process is influenced by a multitude of 
variables, including temperature, pressure, catalyst 
properties, and feedstock characteristics [15]. 
Understanding the inter relationships between these 
variables is crucial for optimizing catalytic cracking 
performance, improving product yields, and reducing 
operating costs [17][18]. 
      Numerous studies have investigated the effects of 
various variables on catalytic cracking performance. 
Temperature, for instance, has been identified as a critical 
factor, with optimal temperatures ranging from 480°C to 
550°C [16]. Similarly, catalyst properties, such as surface 
area and pore size, have been found to significantly 
impact catalytic cracking performance [17] [18]. The 
impact of feedstock characteristics on catalytic cracking 
performance has also been extensively studied. For 
example, research has shown that feedstock density and 
viscosity can significantly affect product yields and 
selectivity [19] [20]. Additionally, the effects of operating 
conditions, such as pressure and residence time, on 
catalytic cracking performance have been investigated 
[21][22]. Multivariate analysis techniques, such as 
principal component analysis (PCA) and cluster analysis, 

have been employed to identify patterns and relationships 
between variables in catalytic cracking [20][21]. These 
studies have demonstrated the effectiveness of these 
techniques in reducing data dimensionality and identifying 
key variables that influence catalytic cracking 
performance. Machine learning algorithms, such as 
artificial neural networks (ANNs) and support vector 
machines (SVMs), have also been applied to model and 
optimize catalytic cracking processes [23][24]. These 
studies have shown that machine learning algorithms can 
be effective in predicting product yields and optimizing 
operating conditions. [25] combined expert knowledge 
and data analytics (Artificial Intelligence, Machine 
Learning, and Keyword Analysis) to create a reaction 
network for Asset Integrity Management (AIM) and 
provide a theoretical and practical basis for handling 
uncertainty in large data sets such as company incident 
databases. The purpose of their study was to control and 
minimize the total number of incidents that occur within an 
oil and gas operation by applying a multidisciplinary 
approach to explore and develop AIM. [26] evaluated the 
current state of the Bayesian network approach, which 
included methodology, influential parameters, and 
datasets for risk analysis, and to provide industry experts 
and academics with suggestions for future enhancements 
using content analysis. In the work by [27], modified IFM 
was utilized and by converting the pressure vessel failure 
design data to that of a wide tensile plate by changing its 
equivalent crack length obtained from an axial crack 
present in the cylinder. Results from the analysis carried 
out by [28] revealed that the incorporation of degradation 
and condition-based maintenance (CBM) can indeed be 
done and significantly influence the reliability analysis and 
planning of offshore energy assets. 
      Recent advances in sensing and computing 
technology have given rise to predictive maintenance 
techniques which, unlike traditional maintenance 
management techniques, attempt to predict failures and 
avoid system shut down proactively. The present study 
implements asset integrity management as pivotal for 
safe and efficient operation by employing Data-Driven 
Non-parametric Test and Machine Learning Approach for 
Crude Oil Pressure Vessels. 
 
 
2. METHODOLOGY 
 
      A commercial oil and gas company located in Kwale, 
Delta State, Nigeria was selected as the model used in 
the study. In the development of questionnaires, ranking 
the variables that addresses the specific context of the 
‘AIR’. Baseline understanding of current compliance 
levels is ensured in tailoring the questions to actual 
conditions and practices within the organization or 
industry. These practices were obtained from Inspection 
reports and compliance documents related to AIR, and 
survey-interviews with maintenance and inspection 
personnel. The questionnaires comprised of thirty-two  
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(32) variables for AIR administered to thirteen (13) 
experts for ‘W’ ranking and thirty-two (32) variables for 
NDT techniques administered to thirteen (13) experts for 
the Random Forest Classifier. In developing the 
questionnaire survey, the questions were clear and 
unambiguous, containing the required information in a 

standardized format that did not lead the respondent to 
more than one interpretation. The scaled ranking varied 
from 1 to 32, in which 1 is regarded as the most important 
and 32, the least important. Fig. 1 describes the outline of 
the methodology. 

 
 
                                         Fig. 1: Description of Methodology 
 
      The sequence of this analysis in Fig. 1, involves the 
data and mathematical analysis for the Kendall’s 
Coefficient of Concordance, Merit order of variables' 
sequentiality and the Random Forest Classifier.  
 
 
2.1  Kendall Coefficient of Concordance (W) 
 
‘W’ is useful in establishing merit order sequence of the 
variables. The Kendall Coefficient of Concordance (W), 
which measures the degree of agreement between the 
judges is obtained from the Eqn. (1) and (2) [31]. 

              𝑊 =
𝑆

1

12
𝐾2(𝑁3−𝑁)

                                      

   (1) 
 

where 𝑠 = ∑(𝑅𝑗 −
∑𝑅𝑗

𝑁
)
2

=  Rank variance               

    (2) 
Where Rj is the Column sum of ranks, N, the total number 
of Variables being ranked, S, the sum of Variance and K, 
the number of experts. 
 
 
2.2 Random Forest Classifier 
 
      The Random Forest classifier, developed by [29], is 
an ensemble learning method that combines multiple 
decision trees to enhance prediction accuracy and 

robustness, using the formula for aggregating predictions 
through majority voting for classification. Random Forests 
have been proven to provide good results in cases where 
there are nonlinear relations between the variables in 
numerous industries [30]. The algorithm was chosen 
because of success in similar research and the properties 
of the technique with regards to overfitting, nonlinearity, 
and overall performance. Each subset is created by 
bootstrapping, that operates by constructing multiple 
decision trees during training and outputting the mode of 
the classes for classification or the mean prediction for 
regression Mathematically, the final prediction of the 
Random Forest D(x) is obtained by majority voting 
(classification) is shown in Eqn (3).  

D(y) = mode   1,2,...,ih y i k    

 (3) 
Each tree Pi makes a prediction hi (y) for a given input y. 
The final prediction n of the Random Forest D(y) is 
obtained by majority voting (classification). 
 
 

3.0 RESULT AND DISCUSSION 
 
      The Kendall Coefficient of Concordance, W, 
computation in Eqn (1) is 0.78. This value indicates that it 
is 'meritorious'. The significant values were obtained 
at 99.6 according to the test using the chi square table at  
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0.01 level of significance. This prompted rejecting the null 
hypothesis that disconcordance exists among the 
experts’ rankings. Therefore, it is concluded that the 
experts ranked all scaled variables using similar 

standards. As a result, the analytical tool was used to 
organize the scaled variables according to their order of 
sequentiality, as shown in Table 1. 

 
 
            Table 1: ‘W’ ranked scaled variables regarding ‘AIR’ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
3.2 Random Forest Classifier 
 
      The other set of questionnaires prioritized NDT 
techniques based on their effectiveness, precision, and 
broad applicability in the oil and gas industry's pressure 
vessel inspections was developed and administered to 
experts in the oil and gas industry. The experts ranked 
and prioritized 32 different advanced NDT techniques 
based on their effectiveness, precision, and broad 
applicability in the oil and gas industry's pressure vessel 
inspections. The selected features are temp. ctrl limits, 
environmental impact, asset document, failure analysis, 

equipment monitoring, vibration, pres. ctrl limits, 
regulatory compliance, human factors and safety culture. 
Hyperparameter tuning significantly enhances model 
performance and reliability. By carefully selecting and 
optimizing hyperparameters [37], the models are ensured 
to be both effective and efficient. Scikit-learn library [38] 
was applied for hyper-parameter optimization. The library 
for random search cross-validation was utilized to find the 
best hyperparameters for the Random Forest Classifier 
Model. Table 2 shows the RF model hyperparameter 
limits and optimized values, while Fig. 2 illustrates the 
ranked NDT techniques by the Random Forest Classifier. 

 
 
                                 Table 2: Models Hyperparameter limits and optimized values 
 

Model Hyperparameters Range Optimized Value 

Random Forest n_estimators 10 - 200 100 
 max_depth 10 - 30 20 
 min samples split 2 - 10 5 
 min samples leaf 1 - 4 2 

 
 
 
 
 
 
 
 

S/N  Factors S/N  Factors 

1. 79 Corrosion 17. 211 Design Standards 
2. 84 Pressure 18. 218 Life Cycle Management 
3. 87 Temperature limits 19. 228 Quality Assurance 
4. 93 Vibration 20. 237 Chemical Compatibility 
5. 96 Maintenance Strategies 21. 254 Fluid Properties 
6. 106 Inspection Techniques 22. 268 Data Management 
7 139 Operational Procedures 23. 273 Training and Competence of 

operators 
8 147 Regulatory Compliance 24. 279 Asset Documentation 
9 151 Risk Assessment 25. 283 Root Cause Analysis 
10 166 Failure Analysis 26. 288 Asset Optimization 
11 169 Safety Instrumented Systems 27. 296 Equipment Monitoring 
12 173 Emergency Response 28. 304 Safety Culture 
13 179 Environmental Conditions 29. 318 Supply Chain Management 

14 196 Human Factors 30. 332 Environmental Impact 

15 198 Material Properties 31. 342 Asset Tracking 

16. 208 Asset Monitoring 32 344 Regulatory Changes 
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                                                 Fig. 2: Ranked NDT techniques by the Random Forest Classifier. 
 
 
       The horizontal bar chart in Fig. 2 displays the ranking 
of feature importance scores assigned by the Random 
Forest model. The features are listed on the y-axis, while 
their corresponding importance scores are shown on the 
x-axis. Phased Array Ultrasonic Testing (PAUT) is ranked 
as the most important feature, followed closely by Time-
of-Flight Diffraction (TOFD), Acoustic Emission Testing 
(AET), and Eddy Current Testing (ECT). These top 
features have the highest contribution to the model's 
decision-making. Other significant features include 
Pulsed Eddy Current (PEC), Infrared Thermography 
(IRT), Magnetic Flux Leakage (MFL), and Digital 
Radiography (DR), which also demonstrate relatively high 
importance scores. Computed Radiography (CR), 
Thermal Wave Imaging (TWI), and various ultrasonic and 
radiographic testing methods contribute moderately to the 
model’s predictions. As the ranking progresses 
downward, features such as Digital Holography (DH), 
Microwave Testing (MT), Terahertz Imaging (TI), and 
Capacitance-Based Testing (CBT) show lower 
importance. The least significant features include 
Barkhausen Noise Analysis (BNA), Thermal Conductivity 
Testing (TCT), and Holographic Interferometry (HI), which 
contribute minimally to the model. The ranking suggests 
that ultrasonic and eddy current-based methods play a 
crucial role in the model's classification, while techniques 
like holography and thermal conductivity have much lower 
influence. 
 

5. CONCLUSION 
 
      In the advancement of the industry 4.0 vision over the 
years, significant changes and innovations brought about 
by analytic disruptions using advanced analytics and 
data-driven technologies have sharpened the oil and gas 
industry. These disruptions are transforming traditional 
business models, operations, and decision-making 
processes by leveraging big data, machine learning, 
artificial intelligence (AI), and other advanced analytics 
tools. The Oil and gas industry as a decisive element of 
the world's economy and energy reservoir consists of 
such different global processes as exploration, extraction, 
transporting, refining and marketing. Incidents in the oil 
and gas industry have caused financial loss, 
environmental damage, and broader societal concerns 
due to ineffective Process Safety Management (PSM). 
These techniques are prioritized based on their 
effectiveness, precision, and broad applicability in the oil 
and gas industry's pressure vessel inspections. The 
Kendall Coefficient of Concordance showed that 
Corrosion (79), Pressure (84), Temperature limits (87), 
Vibration (93), Maintenance Strategies (96), Inspection 
Techniques (106) are the most important ‘AIR’ 
parameters while the Phased Array ultrasonic testing, 
Time of flight Diffraction, Acoustic Emission Testing, Eddy 
current testing, Pulsed Eddy current are the most 
important NDT techniques. The study provides insights  
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into which features are most influential as regards AIR 
and NDT techniques, highlighting the strong impact and 
weaker contributions from Expert opinion. 
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